Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessment of SAR speckle filters in the context of object-based image analysis

Morandeira, Natalia SoledadIcon ; Grimson, RafaelIcon ; Kandus, Patricia
Fecha de publicación: 01/2016
Editorial: Taylor & Francis
Revista: Remote Sensing Letters
ISSN: 2150-704X
e-ISSN: 2150-7058
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación; Meteorología y Ciencias Atmosféricas

Resumen

The initial step in most object-based classification methodologies is the application of a segmentation algorithm to define objects. In the context of synthetic aperture radar (SAR) image analysis, the presence of speckle noise might hamper the segmentation quality. The aim of this study is to assess the segmentation performance of SAR images when no filter or different filters are applied before segmentation. In particular, the performance of the mean-shift segmentation algorithm combined with different adaptive and non-adaptive filters is assessed based on both synthetic and natural SAR images. Studied filters include the non-adaptive Boxcar filter and four adaptive filters: the well-known Refined Lee filter and three recently proposed non-local filters differing, in particular, in their dissimilarity criteria: the Hellinger and the Kullback–Leibler filters are based on stochastic distances, whereas the NL-SAR filter is based on the generalized likelihood ratio. Two measures were used for quality assessment: ρ-index and κ-index. Over-segmentation was assessed by the ρ-index, the ratio of the resulting number of segments to the number of connected components of the ground-truth classes. The accuracy of the best possible classification given on the segmentation result was assessed with ground truth information by maximizing the κ-index. A Monte Carlo experiment conducted on synthetic images shows that the quality measures significantly differ for the applied filters. Our results indicate that the use of an adaptive filter improves the performance of the segmentation. In particular, the combination of the mean-shift segmentation algorithm with the NLSAR filter gives the best results and the resulting process is less sensitive to variations in the mean-shift operational parameters than when applying other filters or no filter. The results obtained may help improve the reliability of land-cover classification analyses based on an object-based approach on SAR data.
Palabras clave: Active Microwave , Classification , Segmentation , Speckle Filtering
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.037Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/42469
DOI: http://dx.doi.org/10.1080/2150704X.2015.1117153
URL: http://www.tandfonline.com/doi/abs/10.1080/2150704X.2015.1117153
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Morandeira, Natalia Soledad; Grimson, Rafael; Kandus, Patricia; Assessment of SAR speckle filters in the context of object-based image analysis; Taylor & Francis; Remote Sensing Letters; 7; 2; 1-2016; 150-159
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES