Artículo
On a conjecture regarding Fisher information
Fecha de publicación:
01/2015
Editorial:
Hindawi Publishing Corporation
Revista:
Advances in Mathematical Physics
ISSN:
1687-9139
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Fisher´s information measure I plays a very important role in diverse areas of theoretical physics. The associated measures I x and I p, as functionals of quantum probability distributions defined in, respectively, coordinate and momentum spaces, are the protagonists of our present considerations. The product Ix Ip has been conjectured to exhibit a nontrivial lower bound in Hall (2000). More explicitly, this conjecture says that for any pure state of a particle in one dimension IxIp ≥ 4. We show here that such is not the case. This is illustrated, in particular, for pure states that are solutions to the free-particle Schrödinger equation. In fact, we construct a family of counterexamples to the conjecture, corresponding to time-dependent solutions of the free-particle Schrödinger equation. We also conjecture that any normalizable time-dependent solution of this equation verifies IxIp → 0 for t → ∞.
Palabras clave:
Fisher Information
,
Uncertainty Relations
,
Schroedinger Equation
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Plastino, Ángel Ricardo; Bellomo, Guido; Plastino, Ángel Ricardo; On a conjecture regarding Fisher information; Hindawi Publishing Corporation; Advances in Mathematical Physics; 2015; 1-2015
Compartir
Altmétricas