Mostrar el registro sencillo del ítem
dc.contributor.author
Perichinsky, Gregorio
dc.contributor.author
Jiménez Rey, Elizabeth Miriam
dc.contributor.author
Grossi, María Delia
dc.contributor.author
Vallejos, Félix Anibal
dc.contributor.author
Servetto, Arturo Carlos
dc.contributor.author
Orellana, Rosa Beatriz
dc.contributor.author
Plastino, Ángel Luis
dc.date.available
2018-03-22T13:06:49Z
dc.date.issued
2005-12
dc.identifier.citation
Perichinsky, Gregorio; Jiménez Rey, Elizabeth Miriam; Grossi, María Delia; Vallejos, Félix Anibal; Servetto, Arturo Carlos; et al.; Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families; Facultade Cenecista de Campo Largo; Revista Electrônica de Sistemas de Informacao; 4; 2; 12-2005; 1-14
dc.identifier.issn
1677-3071
dc.identifier.uri
http://hdl.handle.net/11336/39609
dc.description.abstract
The Numeric Taxonomy aims to group operational taxonomic units in clusters (OTUs or taxons or taxa), using the denominated structure analysis by means of numeric methods. These clusters that constitute families are the purpose of this series of projects and they emerge of the structural analysis, of their phenotypical characteristic, exhibiting the relationships in terms of grades of similarity of the OTUs, employing tools such as i) the Euclidean distance and ii) nearest neighbor techniques. Thus taxonomic evidence is gathered so as to quantify the similarity for each pair of OTUs (pair-group method) obtained from the basic data matrix and in this way the significant concept of spectrum of the OTUs is introduced, being based the same one on the state of their characters. A new taxonomic criterion is thereby formulated and a new approach to Computational Taxonomy is presented, that has been already employed with reference to Data Mining, when apply of Machine Learning techniques, in particular to the C4.5 algorithms, created by Quinlan, the degree of efficiency achieved by the TDIDT family´s algorithms when are generating valid models of the data in classification problems with the Gain of Entropy through Maximum Entropy Principle.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Facultade Cenecista de Campo Largo
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Asteroids
dc.subject
Numeric Taxonomy
dc.subject
Intelligent Information Algorithms
dc.subject
Entrophy
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-03-06T15:11:04Z
dc.journal.volume
4
dc.journal.number
2
dc.journal.pagination
1-14
dc.journal.pais
Brasil
dc.journal.ciudad
Santa Catarina
dc.description.fil
Fil: Perichinsky, Gregorio. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Jiménez Rey, Elizabeth Miriam. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Grossi, María Delia. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Vallejos, Félix Anibal. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina
dc.description.fil
Fil: Servetto, Arturo Carlos. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Orellana, Rosa Beatriz. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
dc.journal.title
Revista Electrônica de Sistemas de Informacao
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://doi.org/10.21529/RESI.2005.0402006
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.periodicosibepes.org.br/index.php/reinfo/article/view/160
Archivos asociados