Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families

Perichinsky, Gregorio; Jiménez Rey, Elizabeth Miriam; Grossi, María Delia; Vallejos, Félix Anibal; Servetto, Arturo Carlos; Orellana, Rosa BeatrizIcon ; Plastino, Ángel LuisIcon
Fecha de publicación: 12/2005
Editorial: Facultade Cenecista de Campo Largo
Revista: Revista Electrônica de Sistemas de Informacao
ISSN: 1677-3071
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

The Numeric Taxonomy aims to group operational taxonomic units in clusters (OTUs or taxons or taxa), using the denominated structure analysis by means of numeric methods. These clusters that constitute families are the purpose of this series of projects and they emerge of the structural analysis, of their phenotypical characteristic, exhibiting the relationships in terms of grades of similarity of the OTUs, employing tools such as i) the Euclidean distance and ii) nearest neighbor techniques. Thus taxonomic evidence is gathered so as to quantify the similarity for each pair of OTUs (pair-group method) obtained from the basic data matrix and in this way the significant concept of spectrum of the OTUs is introduced, being based the same one on the state of their characters. A new taxonomic criterion is thereby formulated and a new approach to Computational Taxonomy is presented, that has been already employed with reference to Data Mining, when apply of Machine Learning techniques, in particular to the C4.5 algorithms, created by Quinlan, the degree of efficiency achieved by the TDIDT family´s algorithms when are generating valid models of the data in classification problems with the Gain of Entropy through Maximum Entropy Principle.
Palabras clave: Asteroids , Numeric Taxonomy , Intelligent Information Algorithms , Entrophy
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 767.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/39609
DOI: http://doi.org/10.21529/RESI.2005.0402006
URL: http://www.periodicosibepes.org.br/index.php/reinfo/article/view/160
Colecciones
Articulos(IALP)
Articulos de INST.DE ASTROFISICA LA PLATA
Citación
Perichinsky, Gregorio; Jiménez Rey, Elizabeth Miriam; Grossi, María Delia; Vallejos, Félix Anibal; Servetto, Arturo Carlos; et al.; Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families; Facultade Cenecista de Campo Largo; Revista Electrônica de Sistemas de Informacao; 4; 2; 12-2005; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES