Mostrar el registro sencillo del ítem

dc.contributor.author
Cintas, Celia  
dc.contributor.author
Quinto Sanchez, Mirsha Emmanuel  
dc.contributor.author
Acuña,Victor  
dc.contributor.author
Paschetta, Carolina Andrea  
dc.contributor.author
de Azevedo, Soledad  
dc.contributor.author
Silva de Cerqueira, Caio Cesar  
dc.contributor.author
Ramallo, Virginia  
dc.contributor.author
Gallo, Carla  
dc.contributor.author
Poletti, Giovanni  
dc.contributor.author
Bortolini, Maria Catira  
dc.contributor.author
Canizales Quinteros, Samuel  
dc.contributor.author
Rothhammer, Francisco  
dc.contributor.author
Bedoya, Gabriel  
dc.contributor.author
Ruiz Linares, Andres  
dc.contributor.author
González José, Rolando  
dc.contributor.author
Delrieux, Claudio Augusto  
dc.date.available
2018-03-21T18:00:25Z  
dc.date.issued
2017-05  
dc.identifier.citation
Cintas, Celia; Quinto Sanchez, Mirsha Emmanuel; Acuña,Victor; Paschetta, Carolina Andrea; de Azevedo, Soledad; et al.; Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks; The Institution of Engineering and Technology; IET Biometrics; 6; 3; 5-2017; 211-223  
dc.identifier.issn
2047-4938  
dc.identifier.uri
http://hdl.handle.net/11336/39534  
dc.description.abstract
Accurate gathering of phenotypic information is a key aspect in several subject matters, including biometrics, biomedical analysis, forensics, and many other. Automatic identification of anatomical structures of biometric interest, such as fingerprints, iris patterns, or facial traits, are extensively used in applications like access control and anthropological research, all having in common the drawback of requiring intrusive means for acquiring the required information. In this regard, the ear structure has multiple advantages. Not only the ear´s biometric markers can be easily captured from the distance with non intrusive methods, but also they experiment almost no changes over time, and are not influenced by facial expressions. Here we present a new method based on Geometric Morphometrics and Deep Learning for automatic ear detection and feature extraction in the form of landmarks. A convolutional neural network was trained with a set of manually landmarked examples. The network is able to provide morphometric landmarks on ears´ images automatically, with a performance that matches human landmarking. The feasibility of using ear landmarks as feature vectors opens a novel spectrum of biometrics applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
The Institution of Engineering and Technology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Morfometria Geometrica  
dc.subject
Deep Learning  
dc.subject
Landmarks  
dc.subject
Biometrics  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-12T14:26:42Z  
dc.identifier.eissn
2047-4946  
dc.journal.volume
6  
dc.journal.number
3  
dc.journal.pagination
211-223  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Cintas, Celia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina  
dc.description.fil
Fil: Quinto Sanchez, Mirsha Emmanuel. Universidad Nacional Autónoma de México; México. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Acuña,Victor. University College London; Estados Unidos  
dc.description.fil
Fil: Paschetta, Carolina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina  
dc.description.fil
Fil: de Azevedo, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina  
dc.description.fil
Fil: Silva de Cerqueira, Caio Cesar. Estado de São Paulo. Superintendência da Polícia Técnico-Científica; Brasil  
dc.description.fil
Fil: Ramallo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina  
dc.description.fil
Fil: Gallo, Carla. Universidad Peruana Cayetano Heredia; Perú  
dc.description.fil
Fil: Poletti, Giovanni. Universidad Peruana Cayetano Heredia; Perú  
dc.description.fil
Fil: Bortolini, Maria Catira. Universidade Federal do Rio Grande do Sul; Brasil  
dc.description.fil
Fil: Canizales Quinteros, Samuel. Universidad Nacional Autónoma de México; México  
dc.description.fil
Fil: Rothhammer, Francisco. Universidad de Tarapacá; Chile  
dc.description.fil
Fil: Bedoya, Gabriel. Universidad de Antioquia; Colombia  
dc.description.fil
Fil: Ruiz Linares, Andres. Fudan University; China. Aix Marseille Université; Francia  
dc.description.fil
Fil: González José, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina  
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur; Argentina  
dc.journal.title
IET Biometrics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1049/iet-bmt.2016.0002  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7898901/