Mostrar el registro sencillo del ítem
dc.contributor.author
Cintas, Celia
dc.contributor.author
Quinto Sanchez, Mirsha Emmanuel
dc.contributor.author
Acuña,Victor
dc.contributor.author
Paschetta, Carolina Andrea
dc.contributor.author
de Azevedo, Soledad
dc.contributor.author
Silva de Cerqueira, Caio Cesar
dc.contributor.author
Ramallo, Virginia
dc.contributor.author
Gallo, Carla
dc.contributor.author
Poletti, Giovanni
dc.contributor.author
Bortolini, Maria Catira
dc.contributor.author
Canizales Quinteros, Samuel
dc.contributor.author
Rothhammer, Francisco
dc.contributor.author
Bedoya, Gabriel
dc.contributor.author
Ruiz Linares, Andres
dc.contributor.author
González José, Rolando
dc.contributor.author
Delrieux, Claudio Augusto
dc.date.available
2018-03-21T18:00:25Z
dc.date.issued
2017-05
dc.identifier.citation
Cintas, Celia; Quinto Sanchez, Mirsha Emmanuel; Acuña,Victor; Paschetta, Carolina Andrea; de Azevedo, Soledad; et al.; Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks; The Institution of Engineering and Technology; IET Biometrics; 6; 3; 5-2017; 211-223
dc.identifier.issn
2047-4938
dc.identifier.uri
http://hdl.handle.net/11336/39534
dc.description.abstract
Accurate gathering of phenotypic information is a key aspect in several subject matters, including biometrics, biomedical analysis, forensics, and many other. Automatic identification of anatomical structures of biometric interest, such as fingerprints, iris patterns, or facial traits, are extensively used in applications like access control and anthropological research, all having in common the drawback of requiring intrusive means for acquiring the required information. In this regard, the ear structure has multiple advantages. Not only the ear´s biometric markers can be easily captured from the distance with non intrusive methods, but also they experiment almost no changes over time, and are not influenced by facial expressions. Here we present a new method based on Geometric Morphometrics and Deep Learning for automatic ear detection and feature extraction in the form of landmarks. A convolutional neural network was trained with a set of manually landmarked examples. The network is able to provide morphometric landmarks on ears´ images automatically, with a performance that matches human landmarking. The feasibility of using ear landmarks as feature vectors opens a novel spectrum of biometrics applications.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
The Institution of Engineering and Technology
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Morfometria Geometrica
dc.subject
Deep Learning
dc.subject
Landmarks
dc.subject
Biometrics
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-03-12T14:26:42Z
dc.identifier.eissn
2047-4946
dc.journal.volume
6
dc.journal.number
3
dc.journal.pagination
211-223
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Cintas, Celia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
dc.description.fil
Fil: Quinto Sanchez, Mirsha Emmanuel. Universidad Nacional Autónoma de México; México. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Acuña,Victor. University College London; Estados Unidos
dc.description.fil
Fil: Paschetta, Carolina Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
dc.description.fil
Fil: de Azevedo, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
dc.description.fil
Fil: Silva de Cerqueira, Caio Cesar. Estado de São Paulo. Superintendência da Polícia Técnico-Científica; Brasil
dc.description.fil
Fil: Ramallo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
dc.description.fil
Fil: Gallo, Carla. Universidad Peruana Cayetano Heredia; Perú
dc.description.fil
Fil: Poletti, Giovanni. Universidad Peruana Cayetano Heredia; Perú
dc.description.fil
Fil: Bortolini, Maria Catira. Universidade Federal do Rio Grande do Sul; Brasil
dc.description.fil
Fil: Canizales Quinteros, Samuel. Universidad Nacional Autónoma de México; México
dc.description.fil
Fil: Rothhammer, Francisco. Universidad de Tarapacá; Chile
dc.description.fil
Fil: Bedoya, Gabriel. Universidad de Antioquia; Colombia
dc.description.fil
Fil: Ruiz Linares, Andres. Fudan University; China. Aix Marseille Université; Francia
dc.description.fil
Fil: González José, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentina
dc.description.fil
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur; Argentina
dc.journal.title
IET Biometrics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1049/iet-bmt.2016.0002
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7898901/
Archivos asociados