Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks

Cintas, CeliaIcon ; Quinto Sanchez, Mirsha EmmanuelIcon ; Acuña,Victor; Paschetta, Carolina AndreaIcon ; de Azevedo, SoledadIcon ; Silva de Cerqueira, Caio CesarIcon ; Ramallo, VirginiaIcon ; Gallo, Carla; Poletti, Giovanni; Bortolini, Maria Catira; Canizales Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Ruiz Linares, Andres; González José, RolandoIcon ; Delrieux, Claudio AugustoIcon
Fecha de publicación: 05/2017
Editorial: The Institution of Engineering and Technology
Revista: IET Biometrics
ISSN: 2047-4938
e-ISSN: 2047-4946
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Accurate gathering of phenotypic information is a key aspect in several subject matters, including biometrics, biomedical analysis, forensics, and many other. Automatic identification of anatomical structures of biometric interest, such as fingerprints, iris patterns, or facial traits, are extensively used in applications like access control and anthropological research, all having in common the drawback of requiring intrusive means for acquiring the required information. In this regard, the ear structure has multiple advantages. Not only the ear´s biometric markers can be easily captured from the distance with non intrusive methods, but also they experiment almost no changes over time, and are not influenced by facial expressions. Here we present a new method based on Geometric Morphometrics and Deep Learning for automatic ear detection and feature extraction in the form of landmarks. A convolutional neural network was trained with a set of manually landmarked examples. The network is able to provide morphometric landmarks on ears´ images automatically, with a performance that matches human landmarking. The feasibility of using ear landmarks as feature vectors opens a novel spectrum of biometrics applications.
Palabras clave: Morfometria Geometrica , Deep Learning , Landmarks , Biometrics
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 9.224Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/39534
DOI: http://dx.doi.org/ 10.1049/iet-bmt.2016.0002
URL: http://ieeexplore.ieee.org/document/7898901/
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(IPCSH)
Articulos de INSTITUTO PATAGONICO DE CIENCIAS SOCIALES Y HUMANAS
Citación
Cintas, Celia; Quinto Sanchez, Mirsha Emmanuel; Acuña,Victor; Paschetta, Carolina Andrea; de Azevedo, Soledad; et al.; Automatic ear detection and feature extraction using Geometric Morphometrics and Convolutional Neural Networks; The Institution of Engineering and Technology; IET Biometrics; 6; 3; 5-2017; 211-223
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES