Mostrar el registro sencillo del ítem
dc.contributor.author
Corach, Gustavo
dc.contributor.author
Andruchow, Esteban
dc.date.available
2018-03-19T20:17:50Z
dc.date.issued
2017-12
dc.identifier.citation
Corach, Gustavo; Andruchow, Esteban; Schmidt Decomposable Products of Projections; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 89; 4; 12-2017; 557-580
dc.identifier.issn
0378-620X
dc.identifier.uri
http://hdl.handle.net/11336/39270
dc.description.abstract
We characterize operators T= PQ (P, Q orthogonal projections in a Hilbert space H) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases { ψn} of R(P) and { ξn} of R(Q) such that ⟨ ξn, ψm⟩ = 0 if n≠ m. Also it is shown that this is equivalent to A= P- Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T= PQ has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Differences of Projections
dc.subject
Products of Projections
dc.subject
Projections
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Schmidt Decomposable Products of Projections
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-03-12T19:32:27Z
dc.journal.volume
89
dc.journal.number
4
dc.journal.pagination
557-580
dc.journal.pais
Suiza
dc.journal.ciudad
BASEL
dc.description.fil
Fil: Corach, Gustavo. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
dc.journal.title
Integral Equations and Operator Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00020-017-2402-x
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00020-017-2402-x
Archivos asociados