Mostrar el registro sencillo del ítem

dc.contributor.author
Corach, Gustavo  
dc.contributor.author
Andruchow, Esteban  
dc.date.available
2018-03-19T20:17:50Z  
dc.date.issued
2017-12  
dc.identifier.citation
Corach, Gustavo; Andruchow, Esteban; Schmidt Decomposable Products of Projections; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 89; 4; 12-2017; 557-580  
dc.identifier.issn
0378-620X  
dc.identifier.uri
http://hdl.handle.net/11336/39270  
dc.description.abstract
We characterize operators T= PQ (P, Q orthogonal projections in a Hilbert space H) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases { ψn} of R(P) and { ξn} of R(Q) such that ⟨ ξn, ψm⟩ = 0 if n≠ m. Also it is shown that this is equivalent to A= P- Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T= PQ has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Differences of Projections  
dc.subject
Products of Projections  
dc.subject
Projections  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Schmidt Decomposable Products of Projections  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-12T19:32:27Z  
dc.journal.volume
89  
dc.journal.number
4  
dc.journal.pagination
557-580  
dc.journal.pais
Suiza  
dc.journal.ciudad
BASEL  
dc.description.fil
Fil: Corach, Gustavo. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina  
dc.journal.title
Integral Equations and Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00020-017-2402-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00020-017-2402-x