Artículo
Schmidt Decomposable Products of Projections
Fecha de publicación:
12/2017
Editorial:
Birkhauser Verlag Ag
Revista:
Integral Equations and Operator Theory
ISSN:
0378-620X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We characterize operators T= PQ (P, Q orthogonal projections in a Hilbert space H) which have a singular value decomposition. A spatial characterizations is given: this condition occurs if and only if there exist orthonormal bases { ψn} of R(P) and { ξn} of R(Q) such that ⟨ ξn, ψm⟩ = 0 if n≠ m. Also it is shown that this is equivalent to A= P- Q being diagonalizable. Several examples are studied, relating Toeplitz, Hankel and Wiener–Hopf operators to this condition. We also examine the relationship with the differential geometry of the Grassmann manifold of underlying the Hilbert space: if T= PQ has a singular value decomposition, then the generic parts of P and Q are joined by a minimal geodesic with diagonalizable exponent.
Palabras clave:
Differences of Projections
,
Products of Projections
,
Projections
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Corach, Gustavo; Andruchow, Esteban; Schmidt Decomposable Products of Projections; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 89; 4; 12-2017; 557-580
Compartir
Altmétricas