Mostrar el registro sencillo del ítem
dc.contributor.author
Cesaratto, Eda
dc.contributor.author
Matera, Guillermo
dc.contributor.author
Pérez, Mariana
dc.date.available
2018-03-12T20:27:22Z
dc.date.issued
2017-10
dc.identifier.citation
Cesaratto, Eda; Matera, Guillermo; Pérez, Mariana; The distribution of factorization patterns on linear families of polynomials over a finite field; Springer; Combinatorica; 37; 5; 10-2017; 805-836
dc.identifier.issn
0209-9683
dc.identifier.uri
http://hdl.handle.net/11336/38592
dc.description.abstract
We estimate the number |Aλ| of elements on a linear family A of monic polynomials of Fq[T] of degree n having factorization pattern λ:=1λ12λ2nλn. We show that |Aλ| = T(λ)qn-m + O(qn-m-1/2), where T(λ) is the proportion of elements of the symmetric group of n elements with cycle pattern λ and m is the codimension of A. Furthermore, if the family A under consideration is “sparse”, then |Aλ|=T(λ)qn-m+O(qn-m-1). Our estimates hold for fields Fq of characteristic greater than 2. We provide explicit upper bounds for the constants underlying the O-notation in terms of λ and A with “good” behavior. Our approach reduces the question to estimate the number of Fq-rational points of certain families of complete intersections defined over Fq. Such complete intersections are defined by polynomials which are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning their singular locus, from which precise estimates on their number of Fq-rational points are established.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Finite Fields
dc.subject
Polynomials
dc.subject
Factorization Patterns
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
The distribution of factorization patterns on linear families of polynomials over a finite field
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-03-12T18:30:01Z
dc.journal.volume
37
dc.journal.number
5
dc.journal.pagination
805-836
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Pérez, Mariana. Universidad Nacional de General Sarmiento; Argentina
dc.journal.title
Combinatorica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00493-015-3330-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00493-015-3330-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1408.7014.pdf
Archivos asociados