Mostrar el registro sencillo del ítem

dc.contributor.author
Cesaratto, Eda  
dc.contributor.author
Matera, Guillermo  
dc.contributor.author
Pérez, Mariana  
dc.date.available
2018-03-12T20:27:22Z  
dc.date.issued
2017-10  
dc.identifier.citation
Cesaratto, Eda; Matera, Guillermo; Pérez, Mariana; The distribution of factorization patterns on linear families of polynomials over a finite field; Springer; Combinatorica; 37; 5; 10-2017; 805-836  
dc.identifier.issn
0209-9683  
dc.identifier.uri
http://hdl.handle.net/11336/38592  
dc.description.abstract
We estimate the number |Aλ| of elements on a linear family A of monic polynomials of Fq[T] of degree n having factorization pattern λ:=1λ12λ2nλn. We show that |Aλ| = T(λ)qn-m + O(qn-m-1/2), where T(λ) is the proportion of elements of the symmetric group of n elements with cycle pattern λ and m is the codimension of A. Furthermore, if the family A under consideration is “sparse”, then |Aλ|=T(λ)qn-m+O(qn-m-1). Our estimates hold for fields Fq of characteristic greater than 2. We provide explicit upper bounds for the constants underlying the O-notation in terms of λ and A with “good” behavior. Our approach reduces the question to estimate the number of Fq-rational points of certain families of complete intersections defined over Fq. Such complete intersections are defined by polynomials which are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning their singular locus, from which precise estimates on their number of Fq-rational points are established.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Finite Fields  
dc.subject
Polynomials  
dc.subject
Factorization Patterns  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The distribution of factorization patterns on linear families of polynomials over a finite field  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-12T18:30:01Z  
dc.journal.volume
37  
dc.journal.number
5  
dc.journal.pagination
805-836  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Cesaratto, Eda. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Matera, Guillermo. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Pérez, Mariana. Universidad Nacional de General Sarmiento; Argentina  
dc.journal.title
Combinatorica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00493-015-3330-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00493-015-3330-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1408.7014.pdf