Artículo
The distribution of factorization patterns on linear families of polynomials over a finite field
Fecha de publicación:
10/2017
Editorial:
Springer
Revista:
Combinatorica
ISSN:
0209-9683
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We estimate the number |Aλ| of elements on a linear family A of monic polynomials of Fq[T] of degree n having factorization pattern λ:=1λ12λ2nλn. We show that |Aλ| = T(λ)qn-m + O(qn-m-1/2), where T(λ) is the proportion of elements of the symmetric group of n elements with cycle pattern λ and m is the codimension of A. Furthermore, if the family A under consideration is “sparse”, then |Aλ|=T(λ)qn-m+O(qn-m-1). Our estimates hold for fields Fq of characteristic greater than 2. We provide explicit upper bounds for the constants underlying the O-notation in terms of λ and A with “good” behavior. Our approach reduces the question to estimate the number of Fq-rational points of certain families of complete intersections defined over Fq. Such complete intersections are defined by polynomials which are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning their singular locus, from which precise estimates on their number of Fq-rational points are established.
Palabras clave:
Finite Fields
,
Polynomials
,
Factorization Patterns
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Cesaratto, Eda; Matera, Guillermo; Pérez, Mariana; The distribution of factorization patterns on linear families of polynomials over a finite field; Springer; Combinatorica; 37; 5; 10-2017; 805-836
Compartir
Altmétricas