Mostrar el registro sencillo del ítem

dc.contributor.author
Bre, Facundo  
dc.contributor.author
Silva, Arthur Santos  
dc.contributor.author
Ghisi, Enedir  
dc.contributor.author
Fachinotti, Victor Daniel  
dc.date.available
2018-03-08T18:45:41Z  
dc.date.issued
2016-12  
dc.identifier.citation
Bre, Facundo; Silva, Arthur Santos; Ghisi, Enedir; Fachinotti, Victor Daniel; Residential building design optimisation using sensitivity analysis and genetic algorithm; Elsevier Science Sa; Energy and Buildings; 133; 12-2016; 853-866  
dc.identifier.issn
0378-7788  
dc.identifier.uri
http://hdl.handle.net/11336/38286  
dc.description.abstract
The objective of this paper is to combine sensitivity analysis and simulation-based optimisation in order to optimise the thermal and energy performance of residential buildings in the Argentine Littoral region. An actual house was selected as case study. This is a typical, local, single-family house having some rooms conditioned only by natural ventilation, and other rooms with natural ventilation supplemented by mechanical air-conditioning (hybrid ventilation). Hence, the total degree-hours at the naturally ventilated living room and the total energy consumption by air-conditioning at the bedrooms were chosen as objective functions to be minimised. The global objective function characterising the thermal and energy performance of the house was defined as the weighted sum of these objective functions. This objective function was computed using the EnergyPlus building performance simulation programme. Then, we performed a sensitivity analysis using the Morris screening method to rank the influence of the design variables on the objective function. This showed that the type of external walls, the windows infiltration rate and the solar azimuth were the most influential design variables on the given objective function for the considered house, and also that the azimuth either had a highly nonlinear effect on the objective function or was highly correlated to the others variables, deserving in any case a finer discretisation. Finally, we solved an optimisation problem using genetic algorithms in order to find the optimal set of design variables for the considered house. The results highlighted the efficiency and the effectiveness of the proposed methodology to redesign a typical house in the Argentine Littoral region, improving hugely its thermal and energy performance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Sa  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Energy Consumption  
dc.subject
Energyplus  
dc.subject
Genetic Algorithms  
dc.subject
Hybrid Ventilation  
dc.subject
Multi-Objective Optimisation  
dc.subject
Residential Building  
dc.subject
Sensitivity Analysis  
dc.subject.classification
Otras Ingeniería Civil  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Residential building design optimisation using sensitivity analysis and genetic algorithm  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-07T15:54:41Z  
dc.journal.volume
133  
dc.journal.pagination
853-866  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay; Argentina  
dc.description.fil
Fil: Silva, Arthur Santos. Universidade Federal de Santa Catarina; Brasil  
dc.description.fil
Fil: Ghisi, Enedir. Universidade Federal de Santa Catarina; Brasil  
dc.description.fil
Fil: Fachinotti, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.journal.title
Energy and Buildings  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0378778816312440  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.enbuild.2016.10.025