Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Residential building design optimisation using sensitivity analysis and genetic algorithm

Bre, FacundoIcon ; Silva, Arthur Santos; Ghisi, Enedir; Fachinotti, Victor DanielIcon
Fecha de publicación: 12/2016
Editorial: Elsevier Science Sa
Revista: Energy and Buildings
ISSN: 0378-7788
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Civil; Ciencias de la Computación

Resumen

The objective of this paper is to combine sensitivity analysis and simulation-based optimisation in order to optimise the thermal and energy performance of residential buildings in the Argentine Littoral region. An actual house was selected as case study. This is a typical, local, single-family house having some rooms conditioned only by natural ventilation, and other rooms with natural ventilation supplemented by mechanical air-conditioning (hybrid ventilation). Hence, the total degree-hours at the naturally ventilated living room and the total energy consumption by air-conditioning at the bedrooms were chosen as objective functions to be minimised. The global objective function characterising the thermal and energy performance of the house was defined as the weighted sum of these objective functions. This objective function was computed using the EnergyPlus building performance simulation programme. Then, we performed a sensitivity analysis using the Morris screening method to rank the influence of the design variables on the objective function. This showed that the type of external walls, the windows infiltration rate and the solar azimuth were the most influential design variables on the given objective function for the considered house, and also that the azimuth either had a highly nonlinear effect on the objective function or was highly correlated to the others variables, deserving in any case a finer discretisation. Finally, we solved an optimisation problem using genetic algorithms in order to find the optimal set of design variables for the considered house. The results highlighted the efficiency and the effectiveness of the proposed methodology to redesign a typical house in the Argentine Littoral region, improving hugely its thermal and energy performance.
Palabras clave: Energy Consumption , Energyplus , Genetic Algorithms , Hybrid Ventilation , Multi-Objective Optimisation , Residential Building , Sensitivity Analysis
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.594Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/38286
URL: http://www.sciencedirect.com/science/article/pii/S0378778816312440
DOI: http://dx.doi.org/10.1016/j.enbuild.2016.10.025
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Citación
Bre, Facundo; Silva, Arthur Santos; Ghisi, Enedir; Fachinotti, Victor Daniel; Residential building design optimisation using sensitivity analysis and genetic algorithm; Elsevier Science Sa; Energy and Buildings; 133; 12-2016; 853-866
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES