Mostrar el registro sencillo del ítem
dc.contributor.author
Hochman, Michael
dc.contributor.author
Shmerkin, Pablo Sebastian
dc.date.available
2018-03-07T19:06:02Z
dc.date.issued
2015-10
dc.identifier.citation
Hochman, Michael; Shmerkin, Pablo Sebastian; Equidistribution from fractal measures; Springer; Inventiones Mathematicae; 202; 1; 10-2015; 427-479
dc.identifier.issn
0020-9910
dc.identifier.uri
http://hdl.handle.net/11336/38161
dc.description.abstract
We give a fractal-geometric condition for a measure on [0,1] to be supported on points x that are normal in base n, i.e. such that (Formula presented.) equidistributes modulo 1. This condition is robust under C1 coordinate changes, and it applies also when n is a Pisot number rather than an integer. As applications we obtain new results (and strengthen old ones) about the prevalence of normal numbers in fractal sets, and new results on measure rigidity, specifically completing Host’s theorem to multiplicatively independent integers and proving a Rudolph-Johnson-type theorem for certain pairs of beta transformations.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Equidistribution
dc.subject
Fractals
dc.subject
Resonance
dc.subject
Normal Numbers
dc.subject
11k16
dc.subject
11a63
dc.subject
28a80
dc.subject
28d05
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Equidistribution from fractal measures
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-03-06T17:44:52Z
dc.journal.volume
202
dc.journal.number
1
dc.journal.pagination
427-479
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Hochman, Michael. The Hebrew University of Jerusalem; Israel
dc.description.fil
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of Surrey. Faculty of Engineering and Physical Sciences. Department of Mathematics; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Inventiones Mathematicae
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00222-014-0573-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00222-014-0573-5
Archivos asociados