Mostrar el registro sencillo del ítem

dc.contributor.author
Hochman, Michael  
dc.contributor.author
Shmerkin, Pablo Sebastian  
dc.date.available
2018-03-07T19:06:02Z  
dc.date.issued
2015-10  
dc.identifier.citation
Hochman, Michael; Shmerkin, Pablo Sebastian; Equidistribution from fractal measures; Springer; Inventiones Mathematicae; 202; 1; 10-2015; 427-479  
dc.identifier.issn
0020-9910  
dc.identifier.uri
http://hdl.handle.net/11336/38161  
dc.description.abstract
We give a fractal-geometric condition for a measure on [0,1] to be supported on points x that are normal in base n, i.e. such that (Formula presented.) equidistributes modulo 1. This condition is robust under C1 coordinate changes, and it applies also when n is a Pisot number rather than an integer. As applications we obtain new results (and strengthen old ones) about the prevalence of normal numbers in fractal sets, and new results on measure rigidity, specifically completing Host’s theorem to multiplicatively independent integers and proving a Rudolph-Johnson-type theorem for certain pairs of beta transformations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Equidistribution  
dc.subject
Fractals  
dc.subject
Resonance  
dc.subject
Normal Numbers  
dc.subject
11k16  
dc.subject
11a63  
dc.subject
28a80  
dc.subject
28d05  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Equidistribution from fractal measures  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-03-06T17:44:52Z  
dc.journal.volume
202  
dc.journal.number
1  
dc.journal.pagination
427-479  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Hochman, Michael. The Hebrew University of Jerusalem; Israel  
dc.description.fil
Fil: Shmerkin, Pablo Sebastian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. University of Surrey. Faculty of Engineering and Physical Sciences. Department of Mathematics; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Inventiones Mathematicae  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00222-014-0573-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00222-014-0573-5