Artículo
Equidistribution from fractal measures
Fecha de publicación:
10/2015
Editorial:
Springer
Revista:
Inventiones Mathematicae
ISSN:
0020-9910
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We give a fractal-geometric condition for a measure on [0,1] to be supported on points x that are normal in base n, i.e. such that (Formula presented.) equidistributes modulo 1. This condition is robust under C1 coordinate changes, and it applies also when n is a Pisot number rather than an integer. As applications we obtain new results (and strengthen old ones) about the prevalence of normal numbers in fractal sets, and new results on measure rigidity, specifically completing Host’s theorem to multiplicatively independent integers and proving a Rudolph-Johnson-type theorem for certain pairs of beta transformations.
Palabras clave:
Equidistribution
,
Fractals
,
Resonance
,
Normal Numbers
,
11k16
,
11a63
,
28a80
,
28d05
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Hochman, Michael; Shmerkin, Pablo Sebastian; Equidistribution from fractal measures; Springer; Inventiones Mathematicae; 202; 1; 10-2015; 427-479
Compartir
Altmétricas