Artículo
Optimal Paths for Symmetric Actions in the Unitary Group
Fecha de publicación:
06/2014
Editorial:
Springer
Revista:
Communications In Mathematical Physics
ISSN:
0010-3616
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given a positive and unitarily invariant Lagrangian L defined in the algebra of matrices, and a fixed time interval [0, t0 ] ⊂ ℝ, we study the action defined in the Lie group of n × n unitary matrices U(n) by, where α: [0, t0] → U(n) is a rectifiable curve. We prove that the one-parameter subgroups of U(n) are the optimal paths, provided the spectrum of the exponent is bounded by π. Moreover, if L is strictly convex, we prove that one-parameter subgroups are the unique optimal curves joining given endpoints. Finally, we also study the connection of these results with unitarily invariant metrics in U(n) as well as angular metrics in the Grassmann manifold.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Antezana, Jorge Abel; Larotonda, Gabriel Andrés; Varela, Alejandro; Optimal Paths for Symmetric Actions in the Unitary Group; Springer; Communications In Mathematical Physics; 328; 2; 6-2014; 481-497
Compartir
Altmétricas