Mostrar el registro sencillo del ítem

dc.contributor.author
Negri, Pablo Augusto  
dc.date.available
2018-02-06T19:40:26Z  
dc.date.issued
2014-07  
dc.identifier.citation
Negri, Pablo Augusto; Estimating the queue length at street intersections by using a movement feature space approach; Institution of Engineering and Technology; Iet Image Processing; 8; 7; 7-2014; 406-416  
dc.identifier.issn
1751-9659  
dc.identifier.uri
http://hdl.handle.net/11336/35865  
dc.description.abstract
This study aims to estimate the traffic load at street intersections obtaining the circulating vehicle number through image processing and pattern recognition. The algorithm detects moving objects in a street view by using level lines and generates a new feature space called movement feature space (MFS). The MFS generates primitives as segments and corners to match vehicle model generating hypotheses. The MFS is also grouped in a histogram configuration called histograms of oriented level lines (HO2 L). This work uses HO2 L features to validate vehicle hypotheses comparing the performance of different classifiers: linear support vector machine (SVM), non-linear SVM, neural networks and boosting. On average, successful detection rate is of 86% with 10-1 false positives per image for highly occluded images.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institution of Engineering and Technology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Vehicle Detection  
dc.subject
Movement Feature Space  
dc.subject
Histogram of Oriented Level Lines  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Estimating the queue length at street intersections by using a movement feature space approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-02-05T20:15:30Z  
dc.identifier.eissn
1751-9667  
dc.journal.volume
8  
dc.journal.number
7  
dc.journal.pagination
406-416  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Negri, Pablo Augusto. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas. Instituto de Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Iet Image Processing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1049/iet-ipr.2013.0496  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2013.0496