Artículo
Estimating the queue length at street intersections by using a movement feature space approach
Fecha de publicación:
07/2014
Editorial:
Institution of Engineering and Technology
Revista:
Iet Image Processing
ISSN:
1751-9659
e-ISSN:
1751-9667
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This study aims to estimate the traffic load at street intersections obtaining the circulating vehicle number through image processing and pattern recognition. The algorithm detects moving objects in a street view by using level lines and generates a new feature space called movement feature space (MFS). The MFS generates primitives as segments and corners to match vehicle model generating hypotheses. The MFS is also grouped in a histogram configuration called histograms of oriented level lines (HO2 L). This work uses HO2 L features to validate vehicle hypotheses comparing the performance of different classifiers: linear support vector machine (SVM), non-linear SVM, neural networks and boosting. On average, successful detection rate is of 86% with 10-1 false positives per image for highly occluded images.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Negri, Pablo Augusto; Estimating the queue length at street intersections by using a movement feature space approach; Institution of Engineering and Technology; Iet Image Processing; 8; 7; 7-2014; 406-416
Compartir
Altmétricas