Artículo
On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions
Fecha de publicación:
06/2014
Editorial:
Springer
Revista:
Geometric And Functional Analysis
ISSN:
1016-443X
e-ISSN:
1420-8970
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We prove that the set of exceptional λ∈(1/2,1)λ∈(1/2,1) such that the associated Bernoulli convolution is singular has zero Hausdorff dimension, and likewise for biased Bernoulli convolutions, with the exceptional set independent of the bias. This improves previous results by Erdös, Kahane, Solomyak, Peres and Schlag, and Hochman. A theorem of this kind is also obtained for convolutions of homogeneous self-similar measures. The proofs are very short, and rely on old and new results on the dimensions of self-similar measures and their convolutions, and the decay of their Fourier transform.
Palabras clave:
Bernoulli Convolutions
,
Self-Similarity
,
Absolute Continuity
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Shmerkin, Pablo Sebastian; On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions; Springer; Geometric And Functional Analysis; 24; 3; 6-2014; 946-958
Compartir
Altmétricas