Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting academic achievement: The role of motivation and learning strategies

Stover, Juliana BeatrizIcon ; Freiberg Hoffmann, AgustínIcon ; de la Iglesia, GuadalupeIcon ; Fernandez Liporace, Maria MercedesIcon
Fecha de publicación: 04/2014
Editorial: Scientific Methodical Center Scientia Educologica
Revista: Problems of Psychology in the 21th Century
ISSN: 2029-8587
e-ISSN: 2538-7197
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Psicología

Resumen

The aim of this study consists in testing a predictive model of academic achievement including motivation and learning strategies as predictors. Motivation is defined as the energy and the direction of behaviors; it is categorized in three types of motivation –intrinsic, extrinsic and amotivation (Deci & Ryan, 1985). Learning strategies are deliberate operations oriented towards information processing in academic activities (Valle, Barca, González & Núñez, 1999). Several studies analysed the relationship between motivation and learning strategies in high school and college environments. Students with higher academic achievement were intrinsically motivated and used a wider variety of learning strategies more frequently. A non-experimental predictive design was developed. The sample was composed by 459 students (55.2% high-schoolers; 44.8% college students). Data were gathered by means of sociodemographic and academic surveys, and also by the local versions of the Academic Motivation Scale –EMA, Echelle de Motivation en Éducation (Stover, de la Iglesia, Rial Boubeta & Fernández Liporace, 2012; Vallerand, Blais, Briere & Pelletier, 1989) and the Learning and Study Strategies Inventory –LASSI (Stover, Uriel & Fernández Liporace, 2012; Weinstein, Schulte & Palmer, 1987). Several path analyses were carried out to test a hypothetical model to predict academic achievement (Kline, 1998). Results indicated that selfdetermined motivation explained academic achievement through the use of learning strategies. The final model obtained an excellent fit (χ2=16.523, df= 6, p=0.011; GFI=0.987; AGFI=0.955; SRMR=0.0320; NFI=0.913; IFI=0.943; CFI=0.940). Results are discussed considering Self Determination Theory and previous research.
Palabras clave: Academic Achievement , Learning Strategies , Motivation , Students
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 570.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/35116
URL: http://www.jbse.webinfo.lt/PPC/Problems_of_Psychology.htm
URL: http://oaji.net/articles/2014/444-1403294062.pdf
URL: http://www.scientiasocialis.lt/ppc/?q=node/91
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Stover, Juliana Beatriz; Freiberg Hoffmann, Agustín; de la Iglesia, Guadalupe; Fernandez Liporace, Maria Mercedes; Predicting academic achievement: The role of motivation and learning strategies; Scientific Methodical Center Scientia Educologica; Problems of Psychology in the 21th Century; 8; 1; 4-2014; 71-84
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES