Mostrar el registro sencillo del ítem

dc.contributor.author
Ignat, Liviu I.  
dc.contributor.author
Pinasco, Damian  
dc.contributor.author
Rossi, Julio Daniel  
dc.contributor.author
San Antolín, Angel  
dc.date.available
2018-01-18T21:00:56Z  
dc.date.issued
2014-03  
dc.identifier.citation
Ignat, Liviu I.; Pinasco, Damian; Rossi, Julio Daniel; San Antolín, Angel; Decay estimates for nonlinear nonlocal diffusion problems in the whole space; Springer; Journal d'Analyse Mathématique; 122; 1; 3-2014; 375-401  
dc.identifier.issn
0021-7670  
dc.identifier.uri
http://hdl.handle.net/11336/33894  
dc.description.abstract
In this paper, we obtain bounds for the decay rate in the Lr (ℝd)-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, ut(x,t)=∫RdK(x,y)|u(y,t)−u(x,t)|p−2(u(y,t)−u(x,t))dy,x∈Rd,t>0. We consider a kernel of the form K(x, y) = ψ(y−a(x)) + ψ(x−a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x)=Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form T(u)=−∫RdK(x,y)|u(y)−u(x)|p−2(u(y)−u(x))dy,1⩽p<∞. The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ℝd: λ1,p(Rd)=2(∫Rdψ(z)dz)|1|detA|1/p−1|p. Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Nonlocal Diffusion  
dc.subject
Eigenvalues  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Decay estimates for nonlinear nonlocal diffusion problems in the whole space  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-16T18:05:48Z  
dc.identifier.eissn
1565-8538  
dc.journal.volume
122  
dc.journal.number
1  
dc.journal.pagination
375-401  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Ignat, Liviu I.. Romanian Academy of Sciences. Institute of Mathematics “Simion Stoilow”; Rumania. University of Bucharest. Faculty of Mathematics and Computer Science; Rumania  
dc.description.fil
Fil: Pinasco, Damian. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Alicante. Facultad de Ciencias; España. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: San Antolín, Angel. Universidad de Alicante. Facultad de Ciencias; España  
dc.journal.title
Journal d'Analyse Mathématique  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11854-014-0011-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.2565  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11854-014-0011-z