Mostrar el registro sencillo del ítem
dc.contributor.author
Yao, Jian-Feng
dc.contributor.author
Crivelli, Tomás
dc.contributor.author
Cernuschi Frias, Bruno

dc.contributor.author
Bouthemy, P.
dc.date.available
2016-01-06T15:27:13Z
dc.date.issued
2013-12
dc.identifier.citation
Yao, Jian-Feng ; Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, P.; Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields; SIAM; SIAM Journal On Imaging Sciences; 6; 4; 12-2013; 2484-2520
dc.identifier.uri
http://hdl.handle.net/11336/3377
dc.description.abstract
A motion texture is an instantaneous motion map extracted from a dynamic texture. We observe that such motion maps exhibit values of two types: a discrete component at zero (absence of motion) and continuous motion values. We thus develop a mixed-state Markov random field model to represent motion textures. The core of our approach is to show that motion information is powerful enough to classify and segment dynamic textures if it is properly modeled regarding its specific nature and the local interactions involved. A parsimonious set of 11 parameters constitutes the descriptive feature of a motion texture. The motivation of the proposed formulation runs toward the analysis of dynamic video contents, and we tackle two related problems. First, we present a method for recognition and classification of motion textures, by means of the Kullback-Leibler distance between mixed-state statistical models. Second, we define a two-frame motion texture maximum a posteriori (MAP)-based segmentation method applicable to motion textures with deforming boundaries. We also investigate a new issue, the space-time dynamic texture segmentation, by combining the spatial segmentation and the recognition methods. Numerous experimental results are reported for those three problems which demonstrate the efficiency and accuracy of the proposed two-frame approach.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
SIAM
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Dynamic Textures
dc.subject
Random Fields
dc.subject
Motion Analysis
dc.subject
Mixed-State Models
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-03-30 10:35:44.97925-03
dc.identifier.eissn
1936-4954
dc.journal.volume
6
dc.journal.number
4
dc.journal.pagination
2484-2520
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Philadelphia, PA
dc.description.fil
Fil: Yao, Jian-Feng. The University of Hong Kong. Department of Statistics and Actuarial Science; Hong Kong
dc.description.fil
Fil: Crivelli, Tomás. Universidad de Buenos Aires. Facultad de Ingenieria. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Cernuschi Frias, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina
dc.description.fil
Fil: Bouthemy, P.. Inria, Centre Rennes - Bretagne Atlantique; Francia
dc.journal.title
SIAM Journal On Imaging Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1137/120872048
Archivos asociados