Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields

Yao, Jian-Feng; Crivelli, Tomás; Cernuschi Frias, BrunoIcon ; Bouthemy, P.
Fecha de publicación: 12/2013
Editorial: SIAM
Revista: SIAM Journal On Imaging Sciences
e-ISSN: 1936-4954
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

A motion texture is an instantaneous motion map extracted from a dynamic texture. We observe that such motion maps exhibit values of two types: a discrete component at zero (absence of motion) and continuous motion values. We thus develop a mixed-state Markov random field model to represent motion textures. The core of our approach is to show that motion information is powerful enough to classify and segment dynamic textures if it is properly modeled regarding its specific nature and the local interactions involved. A parsimonious set of 11 parameters constitutes the descriptive feature of a motion texture. The motivation of the proposed formulation runs toward the analysis of dynamic video contents, and we tackle two related problems. First, we present a method for recognition and classification of motion textures, by means of the Kullback-Leibler distance between mixed-state statistical models. Second, we define a two-frame motion texture maximum a posteriori (MAP)-based segmentation method applicable to motion textures with deforming boundaries. We also investigate a new issue, the space-time dynamic texture segmentation, by combining the spatial segmentation and the recognition methods. Numerous experimental results are reported for those three problems which demonstrate the efficiency and accuracy of the proposed two-frame approach.
Palabras clave: Dynamic Textures , Random Fields , Motion Analysis , Mixed-State Models
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.118Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/3377
DOI: http://dx.doi.org/10.1137/120872048
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Yao, Jian-Feng ; Crivelli, Tomás; Cernuschi Frias, Bruno; Bouthemy, P.; Motion Textures: Modeling, Classification And Segmentation Using Mixed-State Markov Random Fields; SIAM; SIAM Journal On Imaging Sciences; 6; 4; 12-2013; 2484-2520
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES