Mostrar el registro sencillo del ítem
dc.contributor.author
Busaniche, Manuela
dc.contributor.author
Cabrer, Leonardo
dc.contributor.author
Mundici, Daniele
dc.date.available
2018-01-17T15:59:38Z
dc.date.issued
2016-06
dc.identifier.citation
Mundici, Daniele; Cabrer, Leonardo; Busaniche, Manuela; Polyhedral MV-algebras; Elsevier; Fuzzy Sets and Systems; 292; 6-2016; 150-159
dc.identifier.issn
0165-0114
dc.identifier.uri
http://hdl.handle.net/11336/33596
dc.description.abstract
A polyhedron in R^n is a finite union of simplexes in R^n. An MV-algebra is polyhedral if it is isomorphic to the MV-algebra of all continuous I-valued piecewise linear functions with integer coefficients, defined on some polyhedron P in R^n. We characterize polyhedral MV-algebras as finitely generated subalgebras of semisimple tensor products of a simple MV-algebra and a finitely presented MV-algebra. We establish a duality between the category of polyhedral MV-algebras and the category of polyhedra with Z-maps. We prove that polyhedral MV-algebras are preserved under various kinds of operations, and have the amalgamation property. Strengthening the Hay-Wojcicki theorem, we prove that every polyhedral MV-algebra is strongly semisimple, in the sense of Dubuc-Poveda.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Mv-Algebra
dc.subject
Polyhedron
dc.subject
Strong Semisimplicity
dc.subject
Amalgamation Property
dc.subject
Bouligand–Severi Tangent
dc.subject
Duality
dc.subject
Finite Presentability
dc.subject
Free Product
dc.subject
Coproduct
dc.subject
Z-Map
dc.subject
Tensor Product
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Polyhedral MV-algebras
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-12-12T18:15:27Z
dc.journal.volume
292
dc.journal.pagination
150-159
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Cabrer, Leonardo. Universita Degli Studi Di Firenze; Italia
dc.description.fil
Fil: Mundici, Daniele. Universita Degli Studi Di Firenze; Italia
dc.journal.title
Fuzzy Sets and Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.fss.2014.06.015
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0165011414003054?via%3Dihub
Archivos asociados