Artículo
Polyhedral MV-algebras
Fecha de publicación:
06/2016
Editorial:
Elsevier
Revista:
Fuzzy Sets and Systems
ISSN:
0165-0114
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A polyhedron in R^n is a finite union of simplexes in R^n. An MV-algebra is polyhedral if it is isomorphic to the MV-algebra of all continuous I-valued piecewise linear functions with integer coefficients, defined on some polyhedron P in R^n. We characterize polyhedral MV-algebras as finitely generated subalgebras of semisimple tensor products of a simple MV-algebra and a finitely presented MV-algebra. We establish a duality between the category of polyhedral MV-algebras and the category of polyhedra with Z-maps. We prove that polyhedral MV-algebras are preserved under various kinds of operations, and have the amalgamation property. Strengthening the Hay-Wojcicki theorem, we prove that every polyhedral MV-algebra is strongly semisimple, in the sense of Dubuc-Poveda.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Mundici, Daniele; Cabrer, Leonardo; Busaniche, Manuela; Polyhedral MV-algebras; Elsevier; Fuzzy Sets and Systems; 292; 6-2016; 150-159
Compartir
Altmétricas