Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm

Baquela, Enrique Gabriel; Olivera, Ana CarolinaIcon
Fecha de publicación: 01/2019
Editorial: Elsevier
Revista: Operations Research Perspectives
ISSN: 2214-7160
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Optimization via Simulation (OvS) is an useful optimization tool to find a solution to an optimization problem that is difficult to model analytically. OvS consists in evaluating potential solutions through simulation executions; however, its high computational cost is a factor that can make its implementation infeasible. This issue also occurs in multi-objective problems, which tend to be expensive to solve. In this work, we present a new hybrid multi-objective OvS algorithm, which uses Kriging-type metamodels to estimate the simulations results and a multi-objective evolutionary algorithm to manage the optimization process. Our proposal succeeds in reducing the computational cost significantly without affecting the quality of the results obtained. The evolutionary part of the hybrid algorithm is based on the popular NSGA-II. The hybrid method is compared to the canonical NSGA-II and other hybrid approaches, showing a good performance not only in the quality of the solutions but also as computational cost saving.
Palabras clave: KRIGING , METAMODEL , MULTI-OBJECTIVE OPTIMIZATION , NSGA-II , OPTIMIZATION VIA SIMULATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.125Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/124621
URL: https://linkinghub.elsevier.com/retrieve/pii/S221471601830068X
DOI: http://dx.doi.org/10.1016/j.orp.2019.100098
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Baquela, Enrique Gabriel; Olivera, Ana Carolina; A novel hybrid multi-objective metamodel-based evolutionary optimization algorithm; Elsevier; Operations Research Perspectives; 6; 100098; 1-2019; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES