Mostrar el registro sencillo del ítem
dc.contributor.author
Massey, Pedro Gustavo
dc.contributor.author
Ruiz, Mariano Andres
dc.contributor.author
Stojanoff, Demetrio
dc.date.available
2018-01-16T18:47:27Z
dc.date.issued
2014-12
dc.identifier.citation
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Optimal frame completions; Springer; Advances In Computational Mathematics; 40; 5-6; 12-2014; 1011-1042
dc.identifier.issn
1019-7168
dc.identifier.uri
http://hdl.handle.net/11336/33465
dc.description.abstract
Given a finite sequence of vectors F0 in C d we describe the spectral and geometrical structure of optimal frame completions of F0 obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to a general convex potential. In particular, our analysis includes the so-called Mean Square Error (MSE) and the Benedetto-Fickus’ frame potential. On a first step, we reduce the problem of finding the optimal completions to the computation of the minimum of a convex function in a convex compact polytope in R d . As a second step, we show that there exists a finite set (that can be explicitly computed in terms of a finite step algorithm that depends on F0 and the sequence of prescribed norms) such that the optimal frame completions with respect to a given convex potential can be described in terms of a distinguished element of this set. As a byproduct we characterize the cases of equality in Lidskii’s inequality from matrix theory.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Frame Completions
dc.subject
Majorization
dc.subject
Lidskii'S Inequality
dc.subject
Schur-Horn Theorem
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Optimal frame completions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-01-10T20:29:15Z
dc.journal.volume
40
dc.journal.number
5-6
dc.journal.pagination
1011-1042
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Massey, Pedro Gustavo. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Ruiz, Mariano Andres. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Stojanoff, Demetrio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
dc.journal.title
Advances In Computational Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10444-013-9339-7
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10444-013-9339-7
Archivos asociados