Artículo
Optimal frame completions
Fecha de publicación:
12/2014
Editorial:
Springer
Revista:
Advances In Computational Mathematics
ISSN:
1019-7168
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given a finite sequence of vectors F0 in C d we describe the spectral and geometrical structure of optimal frame completions of F0 obtained by appending a finite sequence of vectors with prescribed norms, where optimality is measured with respect to a general convex potential. In particular, our analysis includes the so-called Mean Square Error (MSE) and the Benedetto-Fickus’ frame potential. On a first step, we reduce the problem of finding the optimal completions to the computation of the minimum of a convex function in a convex compact polytope in R d . As a second step, we show that there exists a finite set (that can be explicitly computed in terms of a finite step algorithm that depends on F0 and the sequence of prescribed norms) such that the optimal frame completions with respect to a given convex potential can be described in terms of a distinguished element of this set. As a byproduct we characterize the cases of equality in Lidskii’s inequality from matrix theory.
Palabras clave:
Frame Completions
,
Majorization
,
Lidskii'S Inequality
,
Schur-Horn Theorem
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Massey, Pedro Gustavo; Ruiz, Mariano Andres; Stojanoff, Demetrio; Optimal frame completions; Springer; Advances In Computational Mathematics; 40; 5-6; 12-2014; 1011-1042
Compartir
Altmétricas