Mostrar el registro sencillo del ítem
dc.contributor.author
Goussies, Norberto Adrián
dc.contributor.author
Ubalde, Sebastián
dc.contributor.author
Mejail, Marta Estela
dc.date.available
2018-01-12T19:41:52Z
dc.date.issued
2014
dc.identifier.citation
Goussies, Norberto Adrián; Ubalde, Sebastián; Mejail, Marta Estela; Transfer Learning Decision Forests for Gesture Recognition
; Microtome; Journal of Machine Learning Research; 15; 2014; 3847−3870
dc.identifier.issn
1532-4435
dc.identifier.uri
http://hdl.handle.net/11336/33149
dc.description.abstract
Decision forests are an increasingly popular tool in computer vision problems. Their advantages include high computational efficiency, state-of-the-art accuracy and multi-class support. In this paper, we present a novel method for transfer learning which uses decision forests, and we apply it to recognize gestures and characters. We introduce two mechanisms into the decision forest framework in order to transfer knowledge from the source tasks to a given target task. The first one is mixed information gain, which is a data-based regularizer. The second one is label propagation, which infers the manifold structure of the feature space. We show that both of them are important to achieve higher accuracy. Our experiments demonstrate improvements over traditional decision forests in the ChaLearn Gesture Challenge and MNIST data set. They also compare favorably against other state-of-the-art classifiers.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Microtome
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Gesture Recognition
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Transfer Learning Decision Forests for Gesture Recognition
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-01-11T19:36:53Z
dc.identifier.eissn
1533-7928
dc.journal.volume
15
dc.journal.pagination
3847−3870
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Goussies, Norberto Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Ubalde, Sebastián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Mejail, Marta Estela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Journal of Machine Learning Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://jmlr.org/papers/v15/goussies14a.html
Archivos asociados