Mostrar el registro sencillo del ítem

dc.contributor.author
Goussies, Norberto Adrián  
dc.contributor.author
Ubalde, Sebastián  
dc.contributor.author
Mejail, Marta Estela  
dc.date.available
2018-01-12T19:41:52Z  
dc.date.issued
2014  
dc.identifier.citation
Goussies, Norberto Adrián; Ubalde, Sebastián; Mejail, Marta Estela; Transfer Learning Decision Forests for Gesture Recognition ; Microtome; Journal of Machine Learning Research; 15; 2014; 3847−3870  
dc.identifier.issn
1532-4435  
dc.identifier.uri
http://hdl.handle.net/11336/33149  
dc.description.abstract
Decision forests are an increasingly popular tool in computer vision problems. Their advantages include high computational efficiency, state-of-the-art accuracy and multi-class support. In this paper, we present a novel method for transfer learning which uses decision forests, and we apply it to recognize gestures and characters. We introduce two mechanisms into the decision forest framework in order to transfer knowledge from the source tasks to a given target task. The first one is mixed information gain, which is a data-based regularizer. The second one is label propagation, which infers the manifold structure of the feature space. We show that both of them are important to achieve higher accuracy. Our experiments demonstrate improvements over traditional decision forests in the ChaLearn Gesture Challenge and MNIST data set. They also compare favorably against other state-of-the-art classifiers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Microtome  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Gesture Recognition  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Transfer Learning Decision Forests for Gesture Recognition  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-11T19:36:53Z  
dc.identifier.eissn
1533-7928  
dc.journal.volume
15  
dc.journal.pagination
3847−3870  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Goussies, Norberto Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ubalde, Sebastián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Mejail, Marta Estela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of Machine Learning Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://jmlr.org/papers/v15/goussies14a.html