Artículo
Transfer Learning Decision Forests for Gesture Recognition
Fecha de publicación:
2014
Editorial:
Microtome
Revista:
Journal of Machine Learning Research
ISSN:
1532-4435
e-ISSN:
1533-7928
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Decision forests are an increasingly popular tool in computer vision problems. Their advantages include high computational efficiency, state-of-the-art accuracy and multi-class support. In this paper, we present a novel method for transfer learning which uses decision forests, and we apply it to recognize gestures and characters. We introduce two mechanisms into the decision forest framework in order to transfer knowledge from the source tasks to a given target task. The first one is mixed information gain, which is a data-based regularizer. The second one is label propagation, which infers the manifold structure of the feature space. We show that both of them are important to achieve higher accuracy. Our experiments demonstrate improvements over traditional decision forests in the ChaLearn Gesture Challenge and MNIST data set. They also compare favorably against other state-of-the-art classifiers.
Palabras clave:
Gesture Recognition
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Goussies, Norberto Adrián; Ubalde, Sebastián; Mejail, Marta Estela; Transfer Learning Decision Forests for Gesture Recognition
; Microtome; Journal of Machine Learning Research; 15; 2014; 3847−3870
Compartir