Mostrar el registro sencillo del ítem
dc.contributor.author
Castin, Nicolas
dc.contributor.author
Fernández, J. R.
dc.contributor.author
Pasianot, Roberto Cesar
dc.date.available
2018-01-09T21:31:12Z
dc.date.issued
2013-12
dc.identifier.citation
Pasianot, Roberto Cesar; Fernández, J. R.; Castin, Nicolas; Predicting vacancy migration energies in lattice-free environments using artificial neural networks; Elsevier; Computational Materials Science; 84; 12-2013; 217-225
dc.identifier.issn
0927-0256
dc.identifier.uri
http://hdl.handle.net/11336/32761
dc.description.abstract
We propose a methodology for predicting migration energies associated to the migration of single atoms towards vacant sites, using artificial neural networks. The novelty of the approach, which has already been proven efficient for bulk materials (e.g. bcc or fcc Fe-based alloys), is to allow for any structure, without restriction to a specific lattice. The proposed technique is designed in conjunction with a novel kind of lattice-free atomistic kinetic Monte Carlo model. The idea is to avoid as much as possible heavy atomistic simulations, e.g. static relaxation or general methods for finding transition paths. Such calculations, however, are applied once per Monte Carlo event, when a selected event is applied. The objective of this work is thus to propose a methodology for defining migration events at every step of the simulation, and at the same time assigning a frequency of occurrence to them (using artificial neural networks), in short computing times. We demonstrate the feasibility of this new concept by designing neural networks for predicting vacancy migration energies near grain boundaries in bcc FeCr alloys.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Kinetic Montecarlo
dc.subject
Lattice Free
dc.subject
Artificial Neural Networks
dc.subject
Diffusion
dc.subject
Grain Boundaries
dc.subject.classification
Astronomía
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Predicting vacancy migration energies in lattice-free environments using artificial neural networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-01-08T19:46:39Z
dc.journal.volume
84
dc.journal.pagination
217-225
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Castin, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Nuclear Materials Science Institute. Belgian Nuclear Research Centre; Bélgica
dc.description.fil
Fil: Fernández, J. R.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
dc.description.fil
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Unidad de Actividad de Materiales (CAC); Argentina
dc.journal.title
Computational Materials Science
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0927025613007659
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2013.12.016
Archivos asociados