Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting vacancy migration energies in lattice-free environments using artificial neural networks

Castin, NicolasIcon ; Fernández, J. R.; Pasianot, Roberto CesarIcon
Fecha de publicación: 12/2013
Editorial: Elsevier
Revista: Computational Materials Science
ISSN: 0927-0256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

We propose a methodology for predicting migration energies associated to the migration of single atoms towards vacant sites, using artificial neural networks. The novelty of the approach, which has already been proven efficient for bulk materials (e.g. bcc or fcc Fe-based alloys), is to allow for any structure, without restriction to a specific lattice. The proposed technique is designed in conjunction with a novel kind of lattice-free atomistic kinetic Monte Carlo model. The idea is to avoid as much as possible heavy atomistic simulations, e.g. static relaxation or general methods for finding transition paths. Such calculations, however, are applied once per Monte Carlo event, when a selected event is applied. The objective of this work is thus to propose a methodology for defining migration events at every step of the simulation, and at the same time assigning a frequency of occurrence to them (using artificial neural networks), in short computing times. We demonstrate the feasibility of this new concept by designing neural networks for predicting vacancy migration energies near grain boundaries in bcc FeCr alloys.
Palabras clave: Kinetic Montecarlo , Lattice Free , Artificial Neural Networks , Diffusion , Grain Boundaries
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.251Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/32761
URL: http://www.sciencedirect.com/science/article/pii/S0927025613007659
DOI: http://dx.doi.org/10.1016/j.commatsci.2013.12.016
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Pasianot, Roberto Cesar; Fernández, J. R.; Castin, Nicolas; Predicting vacancy migration energies in lattice-free environments using artificial neural networks; Elsevier; Computational Materials Science; 84; 12-2013; 217-225
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES