Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow Colombo, Ana  
dc.contributor.author
Chiumiento, Eduardo Hernan  
dc.contributor.author
Larotonda, Gabriel Andrés  
dc.date.available
2015-12-29T17:50:00Z  
dc.date.issued
2013-10  
dc.identifier.citation
Andruchow Colombo, Ana; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; The group of L^2 - isometries on H_0^1; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 217; 3; 10-2013; 193-217  
dc.identifier.issn
0039-3223  
dc.identifier.uri
http://hdl.handle.net/11336/3274  
dc.description.abstract
Let be an open subset of Rn. Let L2 = L2( ; dx) and H1 0 = H1 0 ( ) be the standard Lebesgue and Sobolev spaces of complex-valued functions. The aim of this paper is to study the group G of invertible operators on H1 0 which preserve the L2-inner product. When is bounded and @ is smooth, this group acts as the intertwiner of the H1 0 solutions of the non-homogeneous Helmholtz equation u u = f, uj@ = 0. We show that G is a real Banach{Lie group, whose Lie algebra is (i times) the space of symmetrizable operators. We discuss the spectrum of operators belonging to G by means of examples. In particular, we give an example of an operator in G whose spectrum is not contained in the unit circle. We also study the one-parameter subgroups of G. Curves of minimal length in G are considered. We introduce the subgroups Gp := G(I Bp(H1 0 )), where Bp(H1 0 ) is the Schatten ideal of operators on H1 0 . An invariant (weak) Finsler metric is dened by the p-norm of the Schatten ideal of operators on L2. We prove that any pair of operators G1;G2 2 Gp can be joined by a minimal curve of the form (t) = G1eitX , where X is a symmetrizable operator in Bp(H1 0 ).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Polish Acad Sciences Inst Mathematics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Banach Lie Group  
dc.subject
Sobolev Space  
dc.subject
Symmetrizable Operator  
dc.subject
One Parameter Subgroup  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The group of L^2 - isometries on H_0^1  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
217  
dc.journal.number
3  
dc.journal.pagination
193-217  
dc.journal.pais
Polonia  
dc.journal.ciudad
VARSOVIA  
dc.description.fil
Fil: Andruchow Colombo, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemáticas; Argentina  
dc.description.fil
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina  
dc.description.fil
Fil: Larotonda, Gabriel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina  
dc.journal.title
Studia Mathematica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/en/publishing-house/journals-and-series/studia-mathematica/all/217/3