Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The group of L^2 - isometries on H_0^1

Andruchow Colombo, Ana; Chiumiento, Eduardo HernanIcon ; Larotonda, Gabriel AndrésIcon
Fecha de publicación: 10/2013
Editorial: Polish Acad Sciences Inst Mathematics
Revista: Studia Mathematica
ISSN: 0039-3223
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Let be an open subset of Rn. Let L2 = L2( ; dx) and H1 0 = H1 0 ( ) be the standard Lebesgue and Sobolev spaces of complex-valued functions. The aim of this paper is to study the group G of invertible operators on H1 0 which preserve the L2-inner product. When is bounded and @ is smooth, this group acts as the intertwiner of the H1 0 solutions of the non-homogeneous Helmholtz equation u u = f, uj@ = 0. We show that G is a real Banach{Lie group, whose Lie algebra is (i times) the space of symmetrizable operators. We discuss the spectrum of operators belonging to G by means of examples. In particular, we give an example of an operator in G whose spectrum is not contained in the unit circle. We also study the one-parameter subgroups of G. Curves of minimal length in G are considered. We introduce the subgroups Gp := G(I Bp(H1 0 )), where Bp(H1 0 ) is the Schatten ideal of operators on H1 0 . An invariant (weak) Finsler metric is dened by the p-norm of the Schatten ideal of operators on L2. We prove that any pair of operators G1;G2 2 Gp can be joined by a minimal curve of the form (t) = G1eitX , where X is a symmetrizable operator in Bp(H1 0 ).
Palabras clave: Banach Lie Group , Sobolev Space , Symmetrizable Operator , One Parameter Subgroup
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 405.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/3274
URL: https://www.impan.pl/en/publishing-house/journals-and-series/studia-mathematica/
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow Colombo, Ana; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; The group of L^2 - isometries on H_0^1; Polish Acad Sciences Inst Mathematics; Studia Mathematica; 217; 3; 10-2013; 193-217
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES