Mostrar el registro sencillo del ítem
dc.contributor.author
Edera, Alejandro
dc.contributor.author
Schluter, Federico Enrique Adolfo
dc.contributor.author
Bromberg, Facundo
dc.date.available
2018-01-04T15:21:03Z
dc.date.issued
2014-12
dc.identifier.citation
Bromberg, Facundo; Schluter, Federico Enrique Adolfo; Edera, Alejandro; Learning Markov Network Structures Constrained by Context-Specific Independences; World Scientific; International Journal On Artificial Intelligence Tools; 23; 6; 12-2014; 1-43
dc.identifier.issn
0218-2130
dc.identifier.uri
http://hdl.handle.net/11336/32298
dc.description.abstract
This work focuses on learning the structure of Markov networks from data. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights, where the structure describes independences that hold in the distribution. Depending on which is the goal of structure learning, learning algorithms can be divided into: density estimation algorithms, where structure is learned for answering inference queries; and knowledge discovery algorithms, where structure is learned for describing independences qualitatively. The latter algorithms present an important limitation for describing independences because they use a single graph; a coarse grain structure representation which cannot represent flexible independences. For instance, context-specific independences cannot be described by a single graph. To overcome this limitation, this work proposes a new alternative representation named canonical model as well as the CSPC algorithm; a novel knowledge discovery algorithm for learning canonical models by using context-specific independences as constraints. On an extensive empirical evaluation, CSPC learns more accurate structures than state-of-the-art density estimation and knowledge discovery algorithms. Moreover, for answering inference queries, our approach obtains competitive results against density estimation algorithms, significantly outperforming knowledge discovery algorithms.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
World Scientific
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Markov Network
dc.subject
Structure Learning
dc.subject
Context-Specific Independences
dc.subject
Csi Models
dc.subject
Knowledge Discovery
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Learning Markov Network Structures Constrained by Context-Specific Independences
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-01-03T19:58:01Z
dc.identifier.eissn
1793-6349
dc.journal.volume
23
dc.journal.number
6
dc.journal.pagination
1-43
dc.journal.pais
Singapur
dc.conicet.avisoEditorial
Electronic version of an article published as [International Journal on Artificial Intelligence Tools, 23, 06, December 2014, 1460030 [43 pages] https://doi.org/10.1142/S0218213014600306 © World Scientific Publishing Company http://www.worldscientific.com/worldscinet/ijait
dc.description.fil
Fil: Edera, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina
dc.description.fil
Fil: Schluter, Federico Enrique Adolfo. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.description.fil
Fil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información; Argentina
dc.journal.title
International Journal On Artificial Intelligence Tools
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0218213014600306
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0218213014600306
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1307.3964
Archivos asociados