Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Learning Markov Network Structures Constrained by Context-Specific Independences

Edera, AlejandroIcon ; Schluter, Federico Enrique AdolfoIcon ; Bromberg, FacundoIcon
Fecha de publicación: 12/2014
Editorial: World Scientific
Revista: International Journal On Artificial Intelligence Tools
ISSN: 0218-2130
e-ISSN: 1793-6349
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

This work focuses on learning the structure of Markov networks from data. Markov networks are parametric models for compactly representing complex probability distributions. These models are composed by: a structure and numerical weights, where the structure describes independences that hold in the distribution. Depending on which is the goal of structure learning, learning algorithms can be divided into: density estimation algorithms, where structure is learned for answering inference queries; and knowledge discovery algorithms, where structure is learned for describing independences qualitatively. The latter algorithms present an important limitation for describing independences because they use a single graph; a coarse grain structure representation which cannot represent flexible independences. For instance, context-specific independences cannot be described by a single graph. To overcome this limitation, this work proposes a new alternative representation named canonical model as well as the CSPC algorithm; a novel knowledge discovery algorithm for learning canonical models by using context-specific independences as constraints. On an extensive empirical evaluation, CSPC learns more accurate structures than state-of-the-art density estimation and knowledge discovery algorithms. Moreover, for answering inference queries, our approach obtains competitive results against density estimation algorithms, significantly outperforming knowledge discovery algorithms.
Palabras clave: Markov Network , Structure Learning , Context-Specific Independences , Csi Models , Knowledge Discovery
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 592.0Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/32298
URL: http://www.worldscientific.com/doi/abs/10.1142/S0218213014600306
DOI: http://dx.doi.org/10.1142/S0218213014600306
URL: https://arxiv.org/abs/1307.3964
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Bromberg, Facundo; Schluter, Federico Enrique Adolfo; Edera, Alejandro; Learning Markov Network Structures Constrained by Context-Specific Independences; World Scientific; International Journal On Artificial Intelligence Tools; 23; 6; 12-2014; 1-43
Compartir
Altmétricas
 
Estadísticas
Visualizaciones: 183
Descargas: 137

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • Sound Cloud

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

Ministerio
https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES