Mostrar el registro sencillo del ítem
dc.contributor.author
Gimenez Romero, Javier Alejandro
dc.contributor.author
Martinez, Jorge Alberto
dc.contributor.author
Flesia, Ana Georgina
dc.date.available
2018-01-03T18:54:53Z
dc.date.issued
2014-03
dc.identifier.citation
Gimenez Romero, Javier Alejandro; Flesia, Ana Georgina; Martinez, Jorge Alberto; Unsupervised edge map scoring: A statistical complexity approach; Academic Press Inc Elsevier Science; Computer Vision And Image Understanding; 122; 3-2014; 131-142
dc.identifier.issn
1077-3142
dc.identifier.uri
http://hdl.handle.net/11336/32174
dc.description.abstract
We propose a new Statistical Complexity Measure (SCM) to qualify edge maps without Ground Truth (GT) knowledge. The measure is the product of two indices, an Equilibrium index E obtained by projecting the edge map into a family of edge patterns, and an Entropy index H, defined as a function of the Kolmogorov–Smirnov (KS) statistic. This new measure can be used for performance characterization which includes: (i) the specific evaluation of an algorithm (intra-technique process) in order to identify its best parameters and (ii) the comparison of different algorithms (inter-technique process) in order to classify them according to their quality. Results made over images of the South Florida and Berkeley databases show that our approach significantly improves over Pratt’s Figure of Merit (PFoM) which is the objective reference-based edge map evaluation standard, as it takes into account more features in its evaluation.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Unsupervised Quality Measure
dc.subject
Edge Maps
dc.subject
Statistical Complexity
dc.subject
Edge Patterns
dc.subject
Entropy
dc.subject
Kolmogorov–Smirnov Statistic
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Unsupervised edge map scoring: A statistical complexity approach
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-12-26T20:40:22Z
dc.journal.volume
122
dc.journal.pagination
131-142
dc.journal.pais
Estados Unidos
dc.journal.ciudad
San Diego
dc.description.fil
Fil: Gimenez Romero, Javier Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Martinez, Jorge Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Computer Vision And Image Understanding
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cviu.2014.02.005
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1077314214000319
Archivos asociados