Mostrar el registro sencillo del ítem

dc.contributor.author
Gimenez Romero, Javier Alejandro  
dc.contributor.author
Martinez, Jorge Alberto  
dc.contributor.author
Flesia, Ana Georgina  
dc.date.available
2018-01-03T18:54:53Z  
dc.date.issued
2014-03  
dc.identifier.citation
Gimenez Romero, Javier Alejandro; Flesia, Ana Georgina; Martinez, Jorge Alberto; Unsupervised edge map scoring: A statistical complexity approach; Academic Press Inc Elsevier Science; Computer Vision And Image Understanding; 122; 3-2014; 131-142  
dc.identifier.issn
1077-3142  
dc.identifier.uri
http://hdl.handle.net/11336/32174  
dc.description.abstract
We propose a new Statistical Complexity Measure (SCM) to qualify edge maps without Ground Truth (GT) knowledge. The measure is the product of two indices, an Equilibrium index E obtained by projecting the edge map into a family of edge patterns, and an Entropy index H, defined as a function of the Kolmogorov–Smirnov (KS) statistic. This new measure can be used for performance characterization which includes: (i) the specific evaluation of an algorithm (intra-technique process) in order to identify its best parameters and (ii) the comparison of different algorithms (inter-technique process) in order to classify them according to their quality. Results made over images of the South Florida and Berkeley databases show that our approach significantly improves over Pratt’s Figure of Merit (PFoM) which is the objective reference-based edge map evaluation standard, as it takes into account more features in its evaluation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Unsupervised Quality Measure  
dc.subject
Edge Maps  
dc.subject
Statistical Complexity  
dc.subject
Edge Patterns  
dc.subject
Entropy  
dc.subject
Kolmogorov–Smirnov Statistic  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unsupervised edge map scoring: A statistical complexity approach  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-26T20:40:22Z  
dc.journal.volume
122  
dc.journal.pagination
131-142  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Diego  
dc.description.fil
Fil: Gimenez Romero, Javier Alejandro. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Martinez, Jorge Alberto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Computer Vision And Image Understanding  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cviu.2014.02.005  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1077314214000319