Artículo
Unsupervised edge map scoring: A statistical complexity approach
Fecha de publicación:
03/2014
Editorial:
Academic Press Inc Elsevier Science
Revista:
Computer Vision And Image Understanding
ISSN:
1077-3142
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose a new Statistical Complexity Measure (SCM) to qualify edge maps without Ground Truth (GT) knowledge. The measure is the product of two indices, an Equilibrium index E obtained by projecting the edge map into a family of edge patterns, and an Entropy index H, defined as a function of the Kolmogorov–Smirnov (KS) statistic. This new measure can be used for performance characterization which includes: (i) the specific evaluation of an algorithm (intra-technique process) in order to identify its best parameters and (ii) the comparison of different algorithms (inter-technique process) in order to classify them according to their quality. Results made over images of the South Florida and Berkeley databases show that our approach significantly improves over Pratt’s Figure of Merit (PFoM) which is the objective reference-based edge map evaluation standard, as it takes into account more features in its evaluation.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Gimenez Romero, Javier Alejandro; Flesia, Ana Georgina; Martinez, Jorge Alberto; Unsupervised edge map scoring: A statistical complexity approach; Academic Press Inc Elsevier Science; Computer Vision And Image Understanding; 122; 3-2014; 131-142
Compartir
Altmétricas