Artículo
Vacunación óptima para un modelo SIRS
Fecha de publicación:
08/2014
Editorial:
Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física: Unión Matemática Argentina
Revista:
Revista de Educación Matemática
ISSN:
0326-8780
Idioma:
Español
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
En este trabajo presentamos un modelo SIRS para la dinámica de una enfermedad infecciosa sobre una población de individuos, donde se contempla el accionar de un programa de vacunación. Se demuestra que el sistema de ecuaciones diferenciales que describe la dinámica de la enfermedad tiene solución. Es formulado un problema de optimización, relacionado con minimizar el número de individuos susceptibles e infectados, maximizar el número de individuos removidos, y minimizar también la proporción de personas vacunadas. Para aproximar el ?optimo del problema planteado, optamos por discretizar y luego optimizar. Por último se presentará un resultado numérico y la conclusión del trabajo.
Palabras clave:
Optimización
,
Sirs
,
Epidemia
,
Vacunación
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Vacunación óptima para un modelo SIRS; Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física: Unión Matemática Argentina; Revista de Educación Matemática; 29; 2; 8-2014; 25-35
Compartir