Artículo
Nonlinear optimization for a tumor invasion PDE model
Quiroga, Andrés Agustin Ignacio
; Torres, German Ariel
; Fernández Ferreyra, Damián Roberto
; Turner, Cristina Vilma
Fecha de publicación:
06/2016
Editorial:
Springer
Revista:
Computational And Applied Mathematics
ISSN:
0101-8205
e-ISSN:
1807-0302
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, we introduce a methodology to approximate unknown parameters that appear on a non-linear reaction–diffusion model of tumor invasion. These equations consider that tumor-induced alteration of micro-environmental pH furnishes a mechanism for cancer invasion. A coupled system reaction–diffusion explaining this model is given by three partial differential equations for the non-dimensional spatial distribution and temporal evolution of the density of normal tissue, the neoplastic tissue growth and the excess concentration of H ++ ions. The tumor model parameters have a corresponding biological meaning: the reabsorption rate, the destructive influence of H ++ ions in the healthy tissue, the growth rate of tumor tissue and the diffusion coefficient. We propose to solve the direct problem using the Finite Element Method (FEM) and minimize an appropriate functional including both the real data (obtained via in-vitro experiments and fluorescence ratio imaging microscopy) and the numerical solution. The gradient of the functional is computed by the adjoint method.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Fernández Ferreyra, Damián Roberto; Torres, German Ariel; Quiroga, Andrés Agustin Ignacio; Turner, Cristina Vilma; Nonlinear optimization for a tumor invasion PDE model; Springer; Computational And Applied Mathematics; 6-2016; 1-15
Compartir
Altmétricas