Mostrar el registro sencillo del ítem
dc.contributor.author
Heineken, Sigrid Bettina
dc.contributor.author
Morillas, Patricia Mariela
dc.date.available
2017-12-21T20:33:01Z
dc.date.issued
2014-07
dc.identifier.citation
Heineken, Sigrid Bettina; Morillas, Patricia Mariela; Properties of finite dual fusion frames; Elsevier; Linear Algebra and its Applications; 453; 7-2014; 1-27
dc.identifier.issn
0024-3795
dc.identifier.uri
http://hdl.handle.net/11336/31295
dc.description.abstract
A new notion of dual fusion frame has been recently introduced by the authors. In this article that notion is further motivated and it is shown that it is suitable to deal with questions posed in a finite-dimensional real or complex Hilbert space, reinforcing the idea that this concept of duality solves the question about an appropriate definition of dual fusion frames. It is shown that for overcomplete fusion frames there always exist duals different from the canonical one. Conditions that assure the uniqueness of duals are given. The relation of dual fusion frame systems with dual frames and dual projective reconstruction systems is established. Optimal dual fusion frames for the reconstruction in case of erasures of subspaces, and optimal dual fusion frame systems for the reconstruction in case of erasures of local frame vectors are determined. Examples that illustrate the obtained results are exhibited.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Frames
dc.subject
Fusion Frames
dc.subject
Dual Fusion Frames
dc.subject
Optimal Dual Fusion Frames
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Properties of finite dual fusion frames
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-12-12T18:38:02Z
dc.journal.volume
453
dc.journal.pagination
1-27
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Heineken, Sigrid Bettina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
dc.journal.title
Linear Algebra and its Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1509.07724
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0024379514002225
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.laa.2014.04.008
Archivos asociados