Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Feasibility of Detecting Prostate Cancer by Ultraperformance Liquid Chromatography-Mass Spectrometry Serum Metabolomics

Zang, Xiaoling; Jones, Christina M.; Long, Tran Q.; Monge, Maria EugeniaIcon ; Zhou, Manshui; DeEtte Walker, L.; Mezencev, Roman; Gray, Alexander; McDonald, John F.; Fernandez, Facundo M.
Fecha de publicación: 06/2014
Editorial: American Chemical Society
Revista: Journal of Proteome Research
ISSN: 1535-3893
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

Prostate cancer (PCa) is the second leading cause of cancer-related mortality in men. The prevalent diagnosis method is based on the serum prostate-specific antigen (PSA) screening test, which suffers from low specificity, overdiagnosis, and overtreatment. In this work, untargeted metabolomic profiling of age-matched serum samples from prostate cancer patients and healthy individuals was performed using ultraperformance liquid chromatography coupled to high-resolution tandem mass spectrometry (UPLC-MS/MS) and machine learning methods. A metabolite-based in vitro diagnostic multivariate index assay (IVDMIA) was developed to predict the presence of PCa in serum samples with high classification sensitivity, specificity, and accuracy. A panel of 40 metabolic spectral features was found to be differential with 92.1% sensitivity, 94.3% specificity, and 93.0% accuracy. The performance of the IVDMIA was higher than the prevalent PSA test. Within the discriminant panel, 31 metabolites were identified by MS and MS/MS, with 10 further confirmed chromatographically by standards. Numerous discriminant metabolites were mapped in the steroid hormone biosynthesis pathway. The identification of fatty acids, amino acids, lysophospholipids, and bile acids provided further insights into the metabolic alterations associated with the disease. With additional work, the results presented here show great potential toward implementation in clinical settings.
Palabras clave: Prostate Cancer , Prostate Cancer Detection , Untargeted Metabolomics , Oncometabolomics , Ultraperformance Liquid Chromatography , Mass Spectrometry , Machine Learning Methods , Support Vector Machines , In Vitro Diagnostic Multivariate Index Assay , Ivdmia
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.202Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/30813
DOI: http://dx.doi.org/10.1021/pr500409q
URL: http://pubs.acs.org/doi/10.1021/pr500409q
Colecciones
Articulos(CIBION)
Articulos de CENTRO DE INVESTIGACIONES EN BIONANOCIENCIAS "ELIZABETH JARES ERIJMAN"
Citación
Fernandez, Facundo M.; McDonald, John F.; Gray, Alexander; Mezencev, Roman; DeEtte Walker, L.; Zhou, Manshui; et al.; Feasibility of Detecting Prostate Cancer by Ultraperformance Liquid Chromatography-Mass Spectrometry Serum Metabolomics; American Chemical Society; Journal of Proteome Research; 13; 7; 6-2014; 3444-3454
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES