Mostrar el registro sencillo del ítem
dc.contributor.author
Bernardis, Ana Lucia
dc.contributor.author
Crescimbeni, Raquel Liliana
dc.contributor.author
Ferrari Freire, Cecilia
dc.date.available
2017-12-15T17:36:55Z
dc.date.issued
2015-03
dc.identifier.citation
Ferrari Freire, Cecilia; Crescimbeni, Raquel Liliana; Bernardis, Ana Lucia; Multiparameter ergodic Cesàro-α averages; Polish Academy of Sciences. Institute of Mathematics; Colloquium Mathematicum; 140; 3-2015; 15-29
dc.identifier.issn
0010-1354
dc.identifier.uri
http://hdl.handle.net/11336/30776
dc.description.abstract
Let (X,F,ν) be a σ-finite measure space. Associated with k Lamperti operators on Lp(ν), T1,…,Tk, nˉ=(n1,…,nk)∈Nk and αˉ=(α1,…,αk) with 0<αj≤1, we define the ergodic Cesàro-αˉ averages
Rnˉ,αˉf=1∏kj=1Aαjnj∑ik=0nk⋯∑i1=0n1∏j=1kAαj−1nj−ijTikk⋯Ti11f.
For these averages we prove the almost everywhere convergence on X and the convergence in the Lp(ν) norm, when n1,…,nk→∞ independently, for all f∈Lp(dν) with p>1/α∗ where α∗=min1≤j≤kαj. In the limit case p=1/α∗, we prove that the averages Rnˉ,αˉf converge almost everywhere on X for all f in the Orlicz–Lorentz space Λ(1/α∗,φm−1) with φm(t)=t(1+log+t)m. To obtain the result in the limit case we need to study inequalities for the composition of operators Ti that are of restricted weak type (pi,pi). As another application of these inequalities we also study the strong Cesàro-αˉ continuity of functions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Polish Academy of Sciences. Institute of Mathematics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Multiparameter
dc.subject
Ergodic
dc.subject
Cesaro
dc.subject
Averages
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Multiparameter ergodic Cesàro-α averages
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-12-12T18:15:16Z
dc.journal.volume
140
dc.journal.pagination
15-29
dc.journal.pais
Polonia
dc.description.fil
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina
dc.description.fil
Fil: Ferrari Freire, Cecilia. Universidad Nacional del Comahue; Argentina
dc.journal.title
Colloquium Mathematicum
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/cm140-1-3
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/colloquium-mathematicum/all/140/1/87538/multiparameter-ergodic-cesaro-alpha-averages
Archivos asociados