Mostrar el registro sencillo del ítem

dc.contributor.author
Bernardis, Ana Lucia  
dc.contributor.author
Crescimbeni, Raquel Liliana  
dc.contributor.author
Ferrari Freire, Cecilia  
dc.date.available
2017-12-15T17:36:55Z  
dc.date.issued
2015-03  
dc.identifier.citation
Ferrari Freire, Cecilia; Crescimbeni, Raquel Liliana; Bernardis, Ana Lucia; Multiparameter ergodic Cesàro-α averages; Polish Academy of Sciences. Institute of Mathematics; Colloquium Mathematicum; 140; 3-2015; 15-29  
dc.identifier.issn
0010-1354  
dc.identifier.uri
http://hdl.handle.net/11336/30776  
dc.description.abstract
Let (X,F,ν) be a σ-finite measure space. Associated with k Lamperti operators on Lp(ν), T1,…,Tk, nˉ=(n1,…,nk)∈Nk and αˉ=(α1,…,αk) with 0<αj≤1, we define the ergodic Cesàro-αˉ averages Rnˉ,αˉf=1∏kj=1Aαjnj∑ik=0nk⋯∑i1=0n1∏j=1kAαj−1nj−ijTikk⋯Ti11f. For these averages we prove the almost everywhere convergence on X and the convergence in the Lp(ν) norm, when n1,…,nk→∞ independently, for all f∈Lp(dν) with p>1/α∗ where α∗=min1≤j≤kαj. In the limit case p=1/α∗, we prove that the averages Rnˉ,αˉf converge almost everywhere on X for all f in the Orlicz–Lorentz space Λ(1/α∗,φm−1) with φm(t)=t(1+log+t)m. To obtain the result in the limit case we need to study inequalities for the composition of operators Ti that are of restricted weak type (pi,pi). As another application of these inequalities we also study the strong Cesàro-αˉ continuity of functions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Polish Academy of Sciences. Institute of Mathematics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Multiparameter  
dc.subject
Ergodic  
dc.subject
Cesaro  
dc.subject
Averages  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multiparameter ergodic Cesàro-α averages  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-12T18:15:16Z  
dc.journal.volume
140  
dc.journal.pagination
15-29  
dc.journal.pais
Polonia  
dc.description.fil
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.description.fil
Fil: Crescimbeni, Raquel Liliana. Universidad Nacional del Comahue; Argentina  
dc.description.fil
Fil: Ferrari Freire, Cecilia. Universidad Nacional del Comahue; Argentina  
dc.journal.title
Colloquium Mathematicum  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/cm140-1-3  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/colloquium-mathematicum/all/140/1/87538/multiparameter-ergodic-cesaro-alpha-averages