Artículo
Multiparameter ergodic Cesàro-α averages
Fecha de publicación:
03/2015
Editorial:
Polish Academy of Sciences. Institute of Mathematics
Revista:
Colloquium Mathematicum
ISSN:
0010-1354
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let (X,F,ν) be a σ-finite measure space. Associated with k Lamperti operators on Lp(ν), T1,…,Tk, nˉ=(n1,…,nk)∈Nk and αˉ=(α1,…,αk) with 0<αj≤1, we define the ergodic Cesàro-αˉ averages
Rnˉ,αˉf=1∏kj=1Aαjnj∑ik=0nk⋯∑i1=0n1∏j=1kAαj−1nj−ijTikk⋯Ti11f.
For these averages we prove the almost everywhere convergence on X and the convergence in the Lp(ν) norm, when n1,…,nk→∞ independently, for all f∈Lp(dν) with p>1/α∗ where α∗=min1≤j≤kαj. In the limit case p=1/α∗, we prove that the averages Rnˉ,αˉf converge almost everywhere on X for all f in the Orlicz–Lorentz space Λ(1/α∗,φm−1) with φm(t)=t(1+log+t)m. To obtain the result in the limit case we need to study inequalities for the composition of operators Ti that are of restricted weak type (pi,pi). As another application of these inequalities we also study the strong Cesàro-αˉ continuity of functions.
Palabras clave:
Multiparameter
,
Ergodic
,
Cesaro
,
Averages
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Ferrari Freire, Cecilia; Crescimbeni, Raquel Liliana; Bernardis, Ana Lucia; Multiparameter ergodic Cesàro-α averages; Polish Academy of Sciences. Institute of Mathematics; Colloquium Mathematicum; 140; 3-2015; 15-29
Compartir
Altmétricas