Mostrar el registro sencillo del ítem

dc.contributor.author
Agostinelli, Claudio  
dc.contributor.author
Marazzi, Alfio Natale  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2017-12-14T17:44:17Z  
dc.date.issued
2013-07  
dc.identifier.citation
Agostinelli, Claudio; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust Estimators of the Generalized Log-Gamma Distribution; Taylor & Francis; Technometrics; 56; 1; 7-2013; 92-101  
dc.identifier.issn
0040-1706  
dc.identifier.uri
http://hdl.handle.net/11336/30647  
dc.description.abstract
We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Qτ estimator minimizes a τ scale of the differences between empirical and theoretical quantiles. It is n1/2 consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Minimum Quantile Distance Estimators  
dc.subject
Τ - Estimators  
dc.subject
Weighted Likelihood Estimators  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust Estimators of the Generalized Log-Gamma Distribution  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-12T18:49:51Z  
dc.journal.volume
56  
dc.journal.number
1  
dc.journal.pagination
92-101  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Agostinelli, Claudio. Universita' Ca' Foscari Di Venezia; Italia  
dc.description.fil
Fil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza  
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Technometrics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00401706.2013.818578  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00401706.2013.818578