Artículo
Robust Estimators of the Generalized Log-Gamma Distribution
Fecha de publicación:
07/2013
Editorial:
Taylor & Francis
Revista:
Technometrics
ISSN:
0040-1706
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose robust estimators of the generalized log-gamma distribution and, more generally, of location-shape-scale families of distributions. A (weighted) Qτ estimator minimizes a τ scale of the differences between empirical and theoretical quantiles. It is n1/2 consistent; unfortunately, it is not asymptotically normal and, therefore, inconvenient for inference. However, it is a convenient starting point for a one-step weighted likelihood estimator, where the weights are based on a disparity measure between the model density and a kernel density estimate. The one-step weighted likelihood estimator is asymptotically normal and fully efficient under the model. It is also highly robust under outlier contamination. Supplementary materials are available online.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Agostinelli, Claudio; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust Estimators of the Generalized Log-Gamma Distribution; Taylor & Francis; Technometrics; 56; 1; 7-2013; 92-101
Compartir
Altmétricas