Mostrar el registro sencillo del ítem

dc.contributor.author
Ubalde, Sebastián  
dc.contributor.author
Goussies, Norberto Adrián  
dc.contributor.author
Mejail, Marta Estela  
dc.date.available
2017-12-13T15:37:11Z  
dc.date.issued
2013-05  
dc.identifier.citation
Ubalde, Sebastián; Goussies, Norberto Adrián; Mejail, Marta Estela; Efficient descriptor tree growing for fast action recognition; Elsevier Science; Pattern Recognition Letters; 36; 5-2013; 213-220  
dc.identifier.issn
0167-8655  
dc.identifier.uri
http://hdl.handle.net/11336/30404  
dc.description.abstract
Video and image classification based on Instance-to-Class (I2C) distance attracted many recent studies, due to the good generalization capabilities it provides for non-parametric classifiers. In this work we propose a method for action recognition. Our approach needs no intensive learning stage, and its classification performance is comparable to the state-of-the-art. A smart organization of training data allows the classifier to achieve reasonable computation times when working with large training databases. An efficient method for organizing training data in such a way is proposed. We perform thorough experiments on two popular action recognition datasets: the KTH dataset and the IXMAS dataset, and we study the influence of one of the key parameters of the method on classification performance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Action Recognition  
dc.subject
Nearest Neighbor  
dc.subject
Instance-To-Class Distance  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Efficient descriptor tree growing for fast action recognition  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-12T18:49:22Z  
dc.journal.volume
36  
dc.journal.pagination
213-220  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Ubalde, Sebastián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Goussies, Norberto Adrián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Mejail, Marta Estela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina  
dc.journal.title
Pattern Recognition Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.patrec.2013.05.007  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167865513001979