Artículo
Efficient descriptor tree growing for fast action recognition
Fecha de publicación:
05/2013
Editorial:
Elsevier Science
Revista:
Pattern Recognition Letters
ISSN:
0167-8655
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Video and image classification based on Instance-to-Class (I2C) distance attracted many recent studies, due to the good generalization capabilities it provides for non-parametric classifiers. In this work we propose a method for action recognition. Our approach needs no intensive learning stage, and its classification performance is comparable to the state-of-the-art. A smart organization of training data allows the classifier to achieve reasonable computation times when working with large training databases. An efficient method for organizing training data in such a way is proposed. We perform thorough experiments on two popular action recognition datasets: the KTH dataset and the IXMAS dataset, and we study the influence of one of the key parameters of the method on classification performance.
Palabras clave:
Action Recognition
,
Nearest Neighbor
,
Instance-To-Class Distance
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Ubalde, Sebastián; Goussies, Norberto Adrián; Mejail, Marta Estela; Efficient descriptor tree growing for fast action recognition; Elsevier Science; Pattern Recognition Letters; 36; 5-2013; 213-220
Compartir
Altmétricas