Mostrar el registro sencillo del ítem
dc.contributor.author
Cabrelli, Carlos
dc.contributor.author
Molter, Ursula Maria
dc.contributor.author
Romero, Jose Luis Fernando
dc.date.available
2015-11-16T19:17:14Z
dc.date.issued
2013-01-15
dc.identifier.citation
Cabrelli, Carlos; Molter, Ursula Maria; Romero, Jose Luis Fernando; Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces; Elsevier; Advances in Mathematics; 232; 1; 15-1-2013; 98-120
dc.identifier.issn
0001-8708
dc.identifier.uri
http://hdl.handle.net/11336/2825
dc.description.abstract
In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd) 1 < p < +∞. The novelty and difficulty of this construction is that we allow for non-lattice translations. We prove that for an arbitrary expansive matrix A and any set Λ - satisfying a certain spreadness condition but otherwise irregular- there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support. To derive these results we start with a known general “painless” construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
AFFINE SYSTEMS
dc.subject
ANISOTROPIC FUNCTION SPACES
dc.subject
BESOV SPACES
dc.subject
NON-UNIFORM ATOMIC DECOMPOSITION
dc.subject
TRIEBEL-LIZORKIN SPACES
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-03-30 10:35:44.97925-03
dc.journal.volume
232
dc.journal.number
1
dc.journal.pagination
98-120
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Cabrelli, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Molter, Ursula Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Romero, Jose Luis Fernando. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
dc.journal.title
Advances in Mathematics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.aim.2012.09.026
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0001870812003581
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1108.2748
Archivos asociados