Artículo
Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces
Fecha de publicación:
15/01/2013
Editorial:
Elsevier
Revista:
Advances in Mathematics
ISSN:
0001-8708
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article we construct affine systems that provide a simultaneous atomic decomposition for a wide class of functional spaces including the Lebesgue spaces Lp(Rd) 1 < p < +∞. The novelty and difficulty of this construction is that we allow for non-lattice translations. We prove that for an arbitrary expansive matrix A and any set Λ - satisfying a certain spreadness condition but otherwise irregular- there exists a smooth window whose translations along the elements of Λ and dilations by powers of A provide an atomic decomposition for the whole range of the anisotropic Triebel-Lizorkin spaces. The generating window can be either chosen to be bandlimited or to have compact support. To derive these results we start with a known general “painless” construction that has recently appeared in the literature. We show that this construction extends to Besov and Triebel-Lizorkin spaces by providing adequate dual systems.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Cabrelli, Carlos; Molter, Ursula Maria; Romero, Jose Luis Fernando; Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces; Elsevier; Advances in Mathematics; 232; 1; 15-1-2013; 98-120
Compartir
Altmétricas