Mostrar el registro sencillo del ítem
dc.date.available
2025-12-18T10:12:56Z
dc.identifier.citation
Gioia, Daiana Solange; Casal, Juan José; Toriano, Roxana Mabel; (2025): Deciphering Aquaporin-1 Permeability Modulation by Membrane Lipid Composition and Bilayer Mechanical Stress via Atomistic Simulations. Consejo Nacional de Investigaciones Científicas y Técnicas. (dataset). http://hdl.handle.net/11336/278076
dc.identifier.uri
http://hdl.handle.net/11336/278076
dc.description.abstract
Aquaporin-1 (AQP1) is a critical water channel whose functionality is inherently tied to its surrounding lipid environment. Using atomistic molecular dynamics (MD) simulations totaling several microseconds, we investigated the coupled influence of membrane composition and bilayer mechanical tension on AQP1 water permeability. Specifically, systems featuring varying concentrations of anionic lipids (e.g., POPG, Cardiolipin) and differential lateral pressures were analyzed. Our results reveal a non-linear modulation of water flux, quantified via single-channel permeability coefficients and potential of mean force (PMF) profiles, across the channel's selectivity filter. High mechanical tension, regardless of the lipid type, consistently induced a statistically significant decrease in water conductance, attributed to a subtle yet critical tilting of the pore-lining helices and a local increase in the energy barrier within the NPS region. Conversely, specific anionic lipid compositions attenuated this effect, suggesting a compensatory, charge-mediated stabilization of the channel structure under stress. These findings underscore the necessity of considering the membrane's chemomechanical state when modeling AQP1 function and provide essential insights for rational drug design targeting the ADMET properties of water-soluble compounds.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.title
Deciphering Aquaporin-1 Permeability Modulation by Membrane Lipid Composition and Bilayer Mechanical Stress via Atomistic Simulations
dc.type
dataset
dc.date.updated
2025-11-12T09:38:38Z
dc.description.fil
Fil: Gioia, Daiana Solange. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
dc.description.fil
Fil: Casal, Juan José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
dc.description.fil
Fil: Toriano, Roxana Mabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentina
dc.datacite.PublicationYear
2025
dc.datacite.Creator
Gioia, Daiana Solange
dc.datacite.Creator
Casal, Juan José
dc.datacite.Creator
Toriano, Roxana Mabel
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay
dc.datacite.affiliation
Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay
dc.datacite.publisher
Consejo Nacional de Investigaciones Científicas y Técnicas
dc.datacite.subject
Ciencias de la Información y Bioinformática
dc.datacite.subject
Ciencias de la Computación e Información
dc.datacite.subject
CIENCIAS NATURALES Y EXACTAS
dc.datacite.subject
Biofísica
dc.datacite.subject
Ciencias Biológicas
dc.datacite.subject
CIENCIAS NATURALES Y EXACTAS
dc.datacite.subject
Ciencias de la Computación
dc.datacite.subject
Ciencias de la Computación e Información
dc.datacite.subject
CIENCIAS NATURALES Y EXACTAS
dc.datacite.date
01/03/2024-05/06/2025
dc.datacite.DateType
Recolectado
dc.datacite.language
eng
dc.datacite.version
1.0
dc.datacite.description
The molecular dynamics simulations were performed using the GROMACS (Version ) software package.Force Field: The Charmm36m force field was employed for the protein (Aquaporin-1) and the lipid bilayer components.Water Model: The TIP3P water model was used to solvate the systems.Ions: Counterions Na+ y Cl- were added to neutralize the system and achieve a physiological concentration (e.g., 0.15 M).System Size: The total system size typically ranged from 120,000 to 150,000 atoms, depending on the specific lipid composition and box dimensions. Simulation Protocol: The protocol followed standard equilibration and production steps: Minimization: Energy minimization was performed using the steepest descent algorithm. Equilibration: Systems were equilibrated in the NVT (Isothermal-Isochoric) and NPT (Isothermal-Isobaric) ensembles for a total of 50-100 ns to relax the lipid bilayer around the protein. Production Runs: Final production runs were executed in the NPT ensemble, ensuring anisotropic pressure coupling for accurate membrane tension control (often set at 1 bar pressure and 310 K temperature). Integration Time Step: A 2 fs time step was used, coupled with the LINCS algorithm to constrain bond lengths involving hydrogen atoms.AnalysisTrajectory analysis utilized standard GROMACS tools and custom Python scripts leveraging MDAnalysis for detailed quantification of:Water Permeability: Calculated via water crossing events or potential of mean force (PMF) profiles. Membrane Properties: Bilayer thickness, area per lipid (APL), and mechanical tension profiles.Protein Dynamics: Conformational changes and helix tilting related to the applied mechanical stress.
dc.datacite.DescriptionType
Métodos
dc.subject.keyword
AQUAPORIN-1
dc.subject.keyword
LIPIDIC MEMBRANE
dc.subject.keyword
MOLECULAR DYNAMICS
dc.datacite.resourceTypeGeneral
dataset
dc.conicet.datoinvestigacionid
30066
dc.conicet.justificacion
The study did not involve collecting physical measurements or samples from the environment that would necessitate georeferencing. The data reflects the output of high-performance computing, independent of the laboratory's latitude and longitude.
dc.conicet.tieneObs
true
dc.datacite.formatedDate
2024-2025
Archivos del conjunto de datos
Archivo
Notas de uso
Tamaño